• 제목/요약/키워드: Cu contact

검색결과 408건 처리시간 0.043초

이온보조반응에 의한 금속과 불소계 고분자의 접착력 증진 (Adhesion improvement between metals and fluoropolymers by ion assisted reaction)

  • 한성;조준식;최성창;윤기현;고석근
    • 한국진공학회지
    • /
    • 제10권1호
    • /
    • pp.37-43
    • /
    • 2001
  • 반응성 산소 분위기에서 불소계 고분자에 1 keV 아르곤 이온을 조사하였다. 이온 조사에 의하여 발생한 free radical과 산소 기체와의 화학 반응에 의하여 표면에 -(C-O)-,-(C=O)-,-(C=O)-O-등의 친수성 작용기가 생성되었으며 PVDF에 대한 물의 접촉각은 $75^{\circ}$에서 $31^{\circ}$로 감소하였다. 그러나 이온조사량이 큰 경우 고분자 표면에 탄화 상이 형성됨으로써 접촉각은 다시 $65^{\circ}$로 증가하였다. PTFE에 대한 접촉각은 초기에 감소하였다가 표면 거칠기가 급격히 증가함에 따라 접촉각은 더욱 크게 나타났다. 이온 조사에 의하여 표면에 형성된 극성 작용기에 의해 PVDF와 Pt의 접착력은 급격히 증가하였으며 이는 산-염기 상호작용 때문이다. PTFE와 Cu의 경우, 극성 작용기와 금속간의 화학적 결합에 의하여 접착력이 크게 증가하였다.

  • PDF

카본 도포에 따른 Cu-Epoxy 접촉면에서 발생하는 크랙방지에 관한 연구 (A Study on the Prevention of Crack Generated in Interface Cu and Epoxy with Painting of Carbon)

  • 송재주;김성훈;황종선;박종광;한병성
    • 한국전기전자재료학회논문지
    • /
    • 제14권7호
    • /
    • pp.578-583
    • /
    • 2001
  • The bushing for high voltage and large and power should endure weight of itself and force of pushing from contact with circuit breaker. Like this, epoxy mold bushing has to be strong without fault. However, the external circumstances and internal factors was caused by partial discharge, flashover and dielectric breakdown. Therefore, to remove external factor of defect and to prevent the internal cracks and cavity generated from the contraction on interface of Cu-Epoxy, we should form semi-conductive layer on Cu bar by carbon. Then, the PD properties and the insulation qualities of epoxy mold type bushing was able to improved by roles of cushions for the direction of diameter and by effects fo natural sliding like as separated from conductor for the direction of length. So, in this work, we could prove the method of semi-conductive layer in making the long conductor.

  • PDF

Adsorption of Cu(II) Ions onto Myristica Fragrans Shell-based Activated Carbon: Isotherm, Kinetic and Thermodynamic Studies

  • Syahiddin, D.S.;Muslim, A.
    • 대한화학회지
    • /
    • 제62권2호
    • /
    • pp.79-86
    • /
    • 2018
  • This study reported the adsorption of Cu(II) ions onto activated carbon prepared from Myristica Fragrans shell (MFS AC) over independent variables of contact time, activating chemical (NaOH) concentration, initial adsorbate concentration, initial pH of adsorbate solution and adsorption temperature. The MFS AC structure, morphology and total surface area were characterized by FTIR, SEM and BET techniques, respectively. The Cu(II) ions adsorption on the MFS AC (activated using 0.5 M NaOH) fitted best to Freundlich adsorption isotherm (FAI), and the FAI constant obtained was 0.845 L/g at $30^{\circ}C$ and pH 4.5. It followed the pseudo first order of adsorption kinetic (PFOAK) model, and the PFOAK based adsorption capacity was 107.65 mg/g. Thermodynamic study confirmed the Cu(II) ions adsorption should be exothermic and non-spontaneous process, physical adsorption should be taken place. The total surface area and pore volume based on BET analysis was $99.85m^2/g$ and 0.086 cc/g, respectively.

전차선용 Cu-$TiB_2$ 복합재료의 마모거동에 관한 분석 (The Analysis on Wear Behavior of Cu-$TiB_2$ Composite For Contact Wire)

  • 김정남;이태우;권성태;강계명
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.704-709
    • /
    • 2004
  • The wear behavior and the mechanical property of Cu-$TiB_2$ composites were examined. Cu-$TiB_2$ composites were fabricated by hot extrusion and cold drawing with $TiB_2$ contents(1$\∼$5vol.$\%$) and the size of $TiB_2$ particles(10$\mu$m and 20$\mu$m). The pin-an-disk wear test was carried out under dry sliding wear conditions which loads varied with from 20N to 100N. At the time, counterpart wear material used SM45C. The experimental results showed that the friction coefficient and wear rate decreased with increasing the $TiB_2$ contents and decreasing the size of $TiB_2$ particle. Also, the depth of plastically deformed zone decreased with increasing the $TiB_2$ contents and decreasing the size of $TiB_2$ particle.

  • PDF

(Ag-10 % Ni)/Cu 접점재의 냉간압연접합 (Cold Roll Bonding of (Ag-10% Ni)/Cu Clad Metals)

  • 김종헌;김성일;박상용
    • 소성∙가공
    • /
    • 제6권2호
    • /
    • pp.136-144
    • /
    • 1997
  • (Ag-10%Ni)/Cu clad metals for electric contact switch were fabricated by cold-roll bonding process. 2 or 3 passes of cold-rolling was carried out for each process to investigate the effect of the rolling passes on the bonding property. The effect of the annealing temperature of copper before the cold-roll bonding on the bond strength was also studied. The specimen bonded with copper annealed below 30$0^{\circ}C$ before roll bonding showed good bond strength. This is because high stored energy in copper promoted the short range diffusion and the grain refinement of copper by the static recrystallization increased the degree of the interfacial coherency. The maximum peel strength of clad metals bonded with Cu annealed below 30$0^{\circ}C$ was 120N.

  • PDF

Oxidation and Repeated-Bending Properties of Sn-Based Solder Joints After Highly Accelerated Stress Testing (HAST)

  • Kim, Jeonga;Park, Cheolho;Cho, Kyung-Mox;Hong, Wonsik;Bang, Jung-Hwan;Ko, Yong-Ho;Kang, Namhyun
    • Electronic Materials Letters
    • /
    • 제14권6호
    • /
    • pp.678-688
    • /
    • 2018
  • The repeated-bending properties of Sn-0.7Cu, Sn-0.3Ag-0.7Cu (SAC0307), and Sn-3.0Ag-0.5Cu (SAC305) solders mounted on flexible substrates were studied using highly accelerated stress testing (HAST), followed by repeated-bending testing. In the Sn-0.7Cu joints, the $Cu_6Sn_5$ intermetallic compound (IMC) coarsened as the HAST time increased. For the SAC0307 and SAC305 joints, the $Ag_3Sn$ and $Cu_6Sn_5$ IMCs coarsened mainly along the grain boundary as the HAST time increased. The Sn-0.7Cu solder had a high contact angle, compared to the SAC0307 and SAC305 solders; consequently, the SAC0307 and SAC305 solder joints displayed smoother fillet shapes than the Sn-0.7Cu solder joint. The repeated-bending for the Sn-0.7Cu solder produced the crack initiated from the interface between the Cu lead wire and the solder, and that for the SAC solders indicated the cracks initiated at the surface, but away from the interface between the Cu lead wire and the solder. Furthermore, the oxide layer was thickest for Sn-0.7Cu and thinnest for SAC305, regardless of the HAST time. For the SAC solders, the crack initiation rate increased as the oxide layer thickened and roughened. $Cu_6Sn_5$ precipitated and grew along the grain and subgrain boundaries as the HAST time increased, embrittling the grain boundary at the crack propagation site.

Pressure Contact Interconnection for High Reliability Medium Power Integrated Power Electronic Modules

  • Yang, Xu;Chen, Wenjie;He, Xiaoyu;Zeng, Xiangjun;Wang, Zhaoan
    • Journal of Power Electronics
    • /
    • 제9권4호
    • /
    • pp.544-552
    • /
    • 2009
  • This paper presents a novel spring pressure contact interconnect technique for medium power integrated power electronics modules (IPEMs). The key technology of this interconnection is a spring which is made from Be-Cu alloy. By means of the string pressure contact, sufficient press-contact force and good electrical interconnection can be achieved. Another important advantage is that the spring exhibits excellent performance in enduring thermo-mechanical stress. In terms of manufacture procedure, it is also comparatively simple. A 4 kW half-bridge power inverter module is fabricated to demonstrate the performance of the proposed pressure contact technique. Electrical, thermal and mechanical test results of the packaged device are reported. The results of both the simulation and experiment have proven that a good performance can be achieved by the proposed pressure contact technique for the medium power IPEMs.

BCSC(Buired contact Solar cell)의 전극형성 (Metallization of Buired contact Solar cell)

  • 김동섭;조영현;이수홍
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1995년도 춘계학술대회 논문집
    • /
    • pp.145-149
    • /
    • 1995
  • The metallization is the key to determining cell costs, call performance, and cell and system reliabiltiy. The Burled Contact Solar Cell (BCSC) was specifical1y desinged to be compatible tilth low cost, mass production techniques and avoid the conventional metallization problem. By using electroless plating trchniqeu, we performed this metallization inexpensively and reliabley, This paper presents the details of the optimization procedure of metallization schemes on laser grooved cell surface Commercially available Ni ,Cu, and Ag plating solutions were applied for the cell metallization. The application of those solutions on the buried contact front metalization has resulted in an cell efficiency of 18.5% The cell parameters are an open circuit voltage of 651 mV, short circuit current density of 38.6 mA/$\textrm{cm}^2$, and fill factor of 73.5%.

  • PDF

비전도성 접착제로 국부적으로 둘러싸인 인터록킹 접속구조를 이용한 플립칩 공정 (A Flip Chip Process Using an Interlocking-Joint Structure Locally Surrounded by Non-conductive Adhesive)

  • 최정열;오태성
    • 대한금속재료학회지
    • /
    • 제50권10호
    • /
    • pp.785-792
    • /
    • 2012
  • A new flip chip structure consisting of interlocking joints locally surrounded by non-conductive adhesive was investigated in order to improve the contact resistance characteristics and prevent the parasitic capacitance increase. The average contact resistance of the interlocking joints was substantially reduced from $135m{\Omega}$ to $79m{\Omega}$ by increasing the flip chip bonding pressure from 85 MPa to 185 MPa. Improvement of the contact resistance characteristics at higher bonding pressure was attributed not only to the increased contact area between Cu chip bumps and Sn pads, but also to the severe plastic deformation of Sn pads caused during formation of the interlocking-joint structure. The parasitic capacitance increase due to the non-conductive adhesive locally surrounding the flip chip joints was estimated to be as small as 12.5%.