DOI QR코드

DOI QR Code

Adsorption of Cu(II) Ions onto Myristica Fragrans Shell-based Activated Carbon: Isotherm, Kinetic and Thermodynamic Studies

  • Syahiddin, D.S. (Department of Chemical Engineering, Faculty of Engineering, Syiah Kuala University) ;
  • Muslim, A. (Department of Chemical Engineering, Faculty of Engineering, Syiah Kuala University)
  • Received : 2017.09.15
  • Accepted : 2018.02.08
  • Published : 2018.04.20

Abstract

This study reported the adsorption of Cu(II) ions onto activated carbon prepared from Myristica Fragrans shell (MFS AC) over independent variables of contact time, activating chemical (NaOH) concentration, initial adsorbate concentration, initial pH of adsorbate solution and adsorption temperature. The MFS AC structure, morphology and total surface area were characterized by FTIR, SEM and BET techniques, respectively. The Cu(II) ions adsorption on the MFS AC (activated using 0.5 M NaOH) fitted best to Freundlich adsorption isotherm (FAI), and the FAI constant obtained was 0.845 L/g at $30^{\circ}C$ and pH 4.5. It followed the pseudo first order of adsorption kinetic (PFOAK) model, and the PFOAK based adsorption capacity was 107.65 mg/g. Thermodynamic study confirmed the Cu(II) ions adsorption should be exothermic and non-spontaneous process, physical adsorption should be taken place. The total surface area and pore volume based on BET analysis was $99.85m^2/g$ and 0.086 cc/g, respectively.

Keywords

References

  1. Srivastava, N. K.; Majumder, B. C. J. Hazard. Mater. 2008, 151, 1. https://doi.org/10.1016/j.jhazmat.2007.09.101
  2. Hawkes, S. J. J. Chem. Educ. 1997, 74, 1374. https://doi.org/10.1021/ed074p1374
  3. Dimple, L. Int. J. Environ. Res. Dev. 2014, 4, 41.
  4. Yan-Biao, G.; Hong, F.; Chong, C.; Chong-Jian, J.; Fan, X.; Ying, L. Pol. J. Environ. Stud. 2013, 22, 1357.
  5. Bala, M.; Shehu, R. A.; Lawal, M. J. Pure Appl. Sci., 2008, 1, 6.
  6. Munaf, E.; Takeuchi, T. In Hazardous Waste Control in Research and Education; Korenaga, T.; Tsukube, H.; Shinoda, S.; Nakamura, I. Eds.; C. R. C. Press: Boca Raton, F. L., 1994.
  7. Minamisawa, M.; Minamisawa, H.; Yoshida, S.; Takai, N. J. Agric. Food Chem. 2004, 52, 5606. https://doi.org/10.1021/jf0496402
  8. Carl, L. K.; Harry, J. M.; Elizabeth, M. W. A review: The Impact of Copper on Human Health; International Copper Association Ltd.: New York, 2003.
  9. Theophanides, T.; Anastassopoulou, J. Crit. Rev. Oncol. Hematol. 2002, 42, 57. https://doi.org/10.1016/S1040-8428(02)00007-0
  10. Tobin, J. M.; Roux, J. C. Water Res. 1998, 32, 1407. https://doi.org/10.1016/S0043-1354(97)00343-6
  11. Eccles, H. Trends Biotechnol. 1999, 17, 462. https://doi.org/10.1016/S0167-7799(99)01381-5
  12. Leung, W. C.; Wong, M. F.; Chua, H.; Lo, W.; Yu, P. H. F.; Leung, C. K. Water Sci. Technol. 2000, 41, 233.
  13. Basso, M. C.; Cerrella, E. G.; Cukierman, A. L. Ind. Eng. Chem. Res. 2002, 41, 3580. https://doi.org/10.1021/ie020023h
  14. Wong, K. K.; Lee, C. K.; Low, K. S.; Haron, M. J. Chemosphere 2003, 50, 23. https://doi.org/10.1016/S0045-6535(02)00598-2
  15. Baquero, M. C.; Giraldo, L.; Moreno, J. C.; Suarez-Garcia, F.; Martinez-Alonso, A.; Tascon, J. M. D.; J. Anal. Appl. Pyrolysis 2003, 70, 779. https://doi.org/10.1016/S0165-2370(02)00180-8
  16. Gupta, H.; Gogate, P. R. Ultrason. Sonochem. 2016, 30, 11.
  17. Muslim, A.; Zulfian, Ismayanda, M. H.; Devrina, E.; Fahmi, H. J. Eng. Sci. Technol. 2015, 10, 1654.
  18. Muslim, A.; Aprilia, S.; Suha, T. A.; Fitri, Z. J. Korean Chem. Soc. 2017, 61, 89.
  19. Imamoglu, M.; Tekir, O. Desalination 2008, 228, 108. https://doi.org/10.1016/j.desal.2007.08.011
  20. Demirbas, E.; Dizge, N.; Sulak, M. T.; Kobya, M. Chem. Eng. J., 2009, 148, 480. https://doi.org/10.1016/j.cej.2008.09.027
  21. Klasson, K. T.; Wartelle, L. H.; James, E.; Rodgers, J. E.; Lima, I. M. Ind. Crop. Prod. 2009, 30, 72. https://doi.org/10.1016/j.indcrop.2009.01.007
  22. Moreno-Pirajan, J. C.; Giraldo, L. J. Anal. Appl. Pyrol. 2010, 87, 188. https://doi.org/10.1016/j.jaap.2009.12.004
  23. Bouhamed, F.; Elouear, Z.; Bouzid, J. J. Taiwan Inst. Chem. Eng. 2012, 43, 741. https://doi.org/10.1016/j.jtice.2012.02.011
  24. Milenkovic, D. D.; Bojic, A. L. J.; Veljkovic, V. B. Ultrason. Sonochem. 2013, 20, 955. https://doi.org/10.1016/j.ultsonch.2012.10.016
  25. Runtti, H.; Tuomikoski, S.; Kangas, T.; Lassi, U.; Kuokkanen, T.; Ram, J. J. Water Process Eng. 2014, 4, 12. https://doi.org/10.1016/j.jwpe.2014.08.009
  26. Ghaedi, A. M.; Ghaedi, M.; Vafaei, A.; Iravani, N.; Keshavarz, M.; Rad, M.; Tyagi, I.; Agarwal, S.; Gupta, V. K. J. Mol. Liq. 2015, 206, 195. https://doi.org/10.1016/j.molliq.2015.02.029
  27. Demiral, H.; Cihan Gungor, C. Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse. J. Clean. Prod. 2016, 124, 103. https://doi.org/10.1016/j.jclepro.2016.02.084
  28. Muslim, A; Syamsuddin, Y.; Salamun, A.; Abubakar; Ramadhan, D; Peiono, D. IOP Conf. Ser. Mater. Sci. Eng. 2017, 206, 1.
  29. Muslim, A. J. Eng. Sci. Technol. 2017, 12, 280.
  30. MapsofWorld, https://www.mapsofworld.com/world-topten/ nutmeg-producing-countries.html.
  31. Yang, T.; Lua, A. J. Colloid Interface Sci. 2003, 267, 408. https://doi.org/10.1016/S0021-9797(03)00689-1
  32. Hesas, R. H.; Niya, A. A.; Daud, W. M. A. W.; Sahu, J. N. Bioresour. 2013, 8, 2950.
  33. Liu, X.; Wenbo Zhangn, W.; Zhang, Z. Mater. Lett. 2014, 116, 304. https://doi.org/10.1016/j.matlet.2013.11.062
  34. Demirbas, E.; Dizge, N.; Sulak, M. T.; Kobya, M. Chem. Eng. J. 2014, 148, 480.
  35. Langmuir, I. J. Am. Chem. Soc. 1981, 40, 1361.
  36. Freundlich, H. J. Phys. Chem. 1960, 57, 384.
  37. Zengin, A.; Akalin, M. K.; Tekin, K.; Erdem, M.; Turga, T.; Karagoz, K. Ekoloji. 2012, 21, 123. https://doi.org/10.5053/ekoloji.2012.8514
  38. Ahmad, R.; Kumar, R. J. Korean Chem. Soc. 2010, 54, 125. https://doi.org/10.5012/jkcs.2010.54.01.125
  39. Bansode, R. R.; Losso, J. N.; Marshall, W. E.; Rao, R. M.; Portier, R. J. Bioresour. Technol. 2003, 89, 115. https://doi.org/10.1016/S0960-8524(03)00064-6
  40. Kobya, M.; Demirbas, E.; Senturk, E.; Ince, M. Bioresour. Technol. 2005, 96, 1518. https://doi.org/10.1016/j.biortech.2004.12.005
  41. Karagoz, S.; Tay, T.; Ucar, S.; Erdem, M. Bioresour. Technol. 2008, 99, 6214. https://doi.org/10.1016/j.biortech.2007.12.019
  42. Mohan, D.; Gupta, V. K.; Srivastava, S. K.; Chander, S. Colloids Surf. 2001, 177, 169. https://doi.org/10.1016/S0927-7757(00)00669-5
  43. Rao, S. R. Surface Chemistry of froth flotation: Fundamentals; Springer Science: New York, USA, 2004.
  44. Papirer, E. Adsorption on Silica Surfaces: Surfactant Science Series; Marcel Dekker, Inc.: New York, USA, 2000.
  45. Kumar, A.; Awasthi, A. Bioseparation engineering; I. K. International Publishing House, Pvt. Ltd.: New Dehli, India, 2009.
  46. Muslim, A.; Ellysa; Syahiddin, D. S. J. Eng. Technol. Sci. 2017, 49, 472. https://doi.org/10.5614/j.eng.technol.sci.2017.49.4.4