• Title/Summary/Keyword: Cu composites

Search Result 226, Processing Time 0.024 seconds

A study on the fatigue fracture behavior of laminated composites (층상복합판재의 피로파괴거동에 관한 연구)

  • 권영준;신창균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.755-759
    • /
    • 1988
  • Laminated Composites, SS41-Cu-SS41 plates are made by brazing bonding and hot bonding process. Fatigue repeated plane bending tests are carried out and the fracture behavior of Laminated composites, SS41-Cu-SS41 plates are compared with that of homogeneous steel, SS41plates. The following results are obtained; (1) The fatigue life of the brazing bonding plates is higher than those of SS41 plates and hot bonding plates under high stress. (2) The relations between the fatigue crack growth rate, da/dN and stress intensity factor are, da/dN=4.7*10$^{-10}$ $K^{3.20}$, for SS41 da/dN=7.8*10$^{-9}$ $K^{2.43}$, for CAH da/dN=3.6*10$^{-9}$ $K^{2.54}$, for CAB da/dN=1.58*10$^{-9}$ $K^{2.94}$ , for PAH da/dN=1.23*10$^{-9}$ $K^{2.69}$, for PAB

TiB2-Cu Interpenetrating Phase Composites Produced by Spark-plasma Sintering

  • Kwon, Young-Soon;V. Dudina, Dina;I. Lomovsky, Oleg;A. Korchagin, Michail;Kim, Ji-Soon
    • Journal of Powder Materials
    • /
    • v.10 no.3
    • /
    • pp.168-171
    • /
    • 2003
  • Interpenetrating phase composites of $TiB_2$-Cu system were produced via Spark-Plasma Sintering (SPS) oi nanocomposite powders. Under simultaneous action of pressure, temperature and electric current titanium diboride nanoparticles distributed in copper matrix move, agglomerate and form a fine-grained skeleton. Increasing SPS-temperature and he]ding time promote densification due to local melting of copper matrix When copper melting is avoided the compacts contain 17-20% porosity but titanium diboride skeleton is still formed representing the feature of SPS . High degree of densification and formation of titanium diboride network result in increased hardness of high-temperature SPS-compacts.

Effect of Sintering Temperature on Microstructure and Mechanical Properties of Cu Particles Dispersed Al2O3 Nanocomposites (Cu 입자분산 Al2O3 나노복합재료의 미세조직과 기계적 특성에 미치는 소결온도의 영향)

  • Jeong, Young-Keun;Oh, Sung-Tag;Choa, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.13 no.5 s.58
    • /
    • pp.366-370
    • /
    • 2006
  • The microstructure and mechanical properties of hot-pressed $Al_2O_3/Cu$ composites with a different sintering temperature have been studied. The size of matrix grain and Cu dispersion in composites increased with increase in sintering temperature. Fracture toughness of the composite sintered at high temperature exhibited an enhanced value. The toughness increase was explained by the thermal residual stress, crack bridging and crack branching by the formation of microcrack. The nanocomposite, hot-pressed at $1450^{\circ}C$, showed the maximum fracture strength of 707 MPa. The strengthening was mainly attributed to the refinement of matrix grains and the increased toughness.

Enhanced Giant Magnetoelectric Effect in Laminate Composites of FeCuNbSiB/FeNi/PZT

  • Wen, Yumei;Wang, Dong;Li, Ping
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.398-402
    • /
    • 2011
  • A novel laminate composite of FeCuNbSiB/FeNi /PZT is proposed, where FeCuNbSiB has a permeability of around 100000, which is much larger than that of FeNi. The high-permeability FeCuNbSiB was laminated with piezomagnetic FeNi rather than attached to its ends. It is expected that the effect produced by the high permeability will act on the whole of the piezomagnetic layer. While a FeNi layer was laminated with a FeCuNbSiB layer, the strong demagnetization produced by the latter was expected to be imposed on the FeNi layer as well as the applied fields. The distribution of applied fields was altered by the high-permeability material (both bias and ac field) and the field variation positively contributed to the ME effect in piezomagnetic/piezoelectric composites. Thus the ME voltage coefficient along with the field sensitivity were improved.

Microstructure Control of Cu base amorphous Alloys by Extrusion (압출공정을 이용한 Cu 계 비정질 합금의 미세조직제어)

  • Kim, Taek-Soo;Lee, Jin-Kyu
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.236-240
    • /
    • 2007
  • In order to control the microstructure of amorphous/crystalline composites, gas atomized $Cu_{54}Ni_{6}Zr_{22}Ti_{18}$ metallic glass powders wrapped in a crystalline brass were extruded repeatedly. The size of microstructure in the resultant composites was varied depending on the pass of extrusion as well as on the area reduction ratio. The microstructure could be estimated using an equation of $r_n=r_{n-1}/R^{1/2}$, where R is reduction ratio and $r_n$ is the resultant radius of the extruded bar after n pass. Theory of microstructural refinement as well as the relationship between the resultant microstructures and mechanical properties was discussed.

  • PDF

Unidirectional Solidification of $Al-CuAl_2$ Eutectic Composites under Forced Convection by Vibration (진동하에서 일방향응고 시킨 $Al-CuAl_2$ 공정복합재료의 응고에 관한 연구)

  • Lee, Hyun-Kyu;Lee, Kil-Hong
    • Journal of Korea Foundry Society
    • /
    • v.18 no.3
    • /
    • pp.234-239
    • /
    • 1998
  • Unidirectional solidification of $Al-CuAl_2$ eutectic composites was studied under the condition of forced convection by vibration. It has been shown that thermal gradient for solid is different from that for liquid during solidification under force convection by vibration. With increase of vibration, mobility of liquid increases, but decreases with decreasing vibration. The rate of solidification is very high initially, and decreases suddenly. For further solidification, the rate of solidification decrceases slowly, and shows a L-type behavior. The mechanical vibration during solidification effects efficiently on nucleation, and induces a forced convection in liquid. By the forced convection, great thermal gradient of liquid interface between solid and liquid can be obtained. The amount of solute near the interface also decreases as solute distribution is improved by the forced convection.

  • PDF

Deformation behavior in Cu-based bulk amorphous alloys composite during compression (동기지 동계 Bulk Amorphous 복합재의 압축 변형거동)

  • Lee C. H.;Kim J. S.;Park E. S.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.203-206
    • /
    • 2004
  • Copper-based bulk amorphous alloy composite was synthesized by using the copper-coated $Cu_{54}Ni_{6}Zr_{22}Ti_{18}$ amorphous powder which was obtained by argon gas atomization. The amorphous powder having a super-cooled liquid region of 53 K was coated by crystalline copper by electroless coating. The consolidation was carried out by manufacturing performs and by the subsequent warm extrusion at 743 K. During the compression test at the room temperature, the composite containing a large fraction of crystalline copper displayed a larger plastic strain after yielding. FEM simulation revealed change in fracture modes in the composites depending on the amount of crystalline copper in the composites.

  • PDF

Effect of Carbon-Nanotube Addition on Thermal Stability of Ti-based Metallic Glass Composites

  • Hsu, Chih-Feng;Lee, Pee-Yew
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1057-1058
    • /
    • 2006
  • The preparation of $Ti_{50}Cu_{28}Ni_{15}Sn_7$ metallic glass composite powders was accomplished by the mechanical alloying of a pure Ti, Cu, Ni, Sn and carbon nanotube (CNT) powder mixture after 8 h milling. In the ball-milled composites, the initial CNT particles were dissolved in the Ti-based alloy glassy matrix. The bulk metallic glass composite was successfully prepared by vacuum hot pressing the as-milled CNT/$Ti_{50}Cu_{28}Ni_{15}Sn_7$ metallic glass composite powders. A significant hardness increase with the CNT additions was observed for the consolidated composite compacts.

  • PDF

Effect of Reinforcement Content on Damping Capacities for Castable Aluminum Matrix Composites Reinforced with SiC and Graphite Particles (SiC와 흑연 입자 강화 주조용 Al기지 복합재료의 진동감쇠능에 미치는 강화입자조성의 효과)

  • 최유송
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.47-58
    • /
    • 2004
  • Loss factors of A356, Mn-Cu alloy and aluminum matrix composites reinforced with $SiC_p$ and Ni-coated graphite particles at various contents have been investigated using clamped-free cantilever beam method. The loss factors of half-power bandwidth of the specimens were measured over a wide range of frequencies from 50 to 3300Hz. Among the specimens, Al-10%$SiC_p$-10%$C_p$ showed the highest loss factor at the mode I, while Mn-Cu alloy showed the highest loss factors at the modes II and III. Consequently, at the mode I the Al-10%$SiC_p$--10%$C_p$ showed the loss factor of 0.00093, which is 2.64 and 1.58 times higher than those of A356 and Mn-Cu alloy, respectively.

Microstructure of W-Cu Composite Powders with Variation of Milling Method during Mechanochemical Process (기계화학적 공정의 밀링 방법에 따른 W-Cu 복합분말의 미세조직)

  • 이강원;김길수;김대건;김영도
    • Journal of Powder Materials
    • /
    • v.9 no.5
    • /
    • pp.329-335
    • /
    • 2002
  • Recently, the fabrication process of the W-Cu nanocomposite powders has been studied to improve the sinterability through the mechanical alloying and reduction of W and Cu oxide mixtures. In this study. the W-Cu composites were produced by mechanochemical process (MCP) using $WO_3-CuO$ mixtures with two different milling types of low and high energy, respectively. These ball-milled mixtures were reduced in $H_2$ atmosphere. The ball-milled and reduced powders were analyzed through XRD, SEM and TEM. The fine W-Cu powder could be obtained by the high energy ball-milling (HM) compared with the large Cu-cored structure powder by the low energy ball-milling (LM). After the HM for 20h, the W grain size of the reduced W-Cu powder was about 20-30 nm.