• Title/Summary/Keyword: Cu Powder

Search Result 1,114, Processing Time 0.036 seconds

Zone-melting of EPD $YBa_2Cu_3O_x$ Thick Film under Low Oxygen Partial Pressure

  • Soh, Dea-Wha;Fan, Zhanguo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.263-266
    • /
    • 2003
  • The fine $YBa_2Cu_3O_x$ powder ($0.2{\sim}1.0\;{\mu}m$) is produced by sol-gel method, and electrophoresis deposition is used for the preparation of $YBa_2Cu_3O_x$ thick films which are deposited on Ag wire. The oriented $YBa_2Cu_3O_x$ was tried to be prepared by the zone-melting method under low oxygen partial pressure. The orientation and the phase composition were examined by the X-ray diffraction and the superconductivities were measured by 4 line method. The critical current densities are still quite low, which may be due to unsuitable technical parameters for zone-melting of $YBa_2Cu_3O_x$ thick films. Therefore the heat treatment condition and controlling of low oxygen partial pressure should be improved in the future experiment.

  • PDF

Graphene Based Cu Oxide Nanocomposites for C-N Cross Coupling Reaction

  • Choi, Jong Hoon;Park, Joon B.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.138.2-138.2
    • /
    • 2013
  • Copper oxide is a multi-functional material being used in various research areas including catalysis, electrochemical materials, oxidizing agents etc. Among these areas, we have synthesized and utilized graphene based copper oxide nanocomposites (CuOx/Graphene) for the catalytic applications (C-N cross coupling reaction). Briefly, Cu precursors were anchored on the graphite oxide(GO) sheets being exfoliated and oxidized from graphite powder. Two different crystalline structures of Cu2O and CuO on graphene and GO were prepared by annealing them in Ar and O2 environments, respectively. The morphological and electronic structures were systemically investigated using FT-IR, XRD, XPS, XAFS, and TEM. Here, we demonstrate that the catalytic performance was found to depend on oxidative states and morphological structures of CuOx graphene nanocomposites. The relationship between the structure of copper oxides and catalytic efficiency toward C-N cross coupling reaction will be discussed.

  • PDF

A New TEM Observation of the Copper Precipitate in High Strength Al-Cu-Mg Alloy (고강도 알루미늄 합금(Al-Cu-Mg)에서 새로운 Cu 석출물의 TEM 관찰)

  • Kim, Hwang-Su
    • Applied Microscopy
    • /
    • v.36 no.2
    • /
    • pp.47-55
    • /
    • 2006
  • In this paper a transmission electron microscope (TEM) observation of fine Cu precipitates distributed randomly in Al-2.5Cu-1.5Mg wt.% alloy is first reported. This new observation happened to occur when an ion milling was peformed to remove oxides on the specimen, particularly, aged 100 hours at $150^{\circ}C$. Meanwhile the oxides were identified to be $Cu_2O$ particles. For this work involved with analysis of diffraction rings, the formulation of the electron diffraction rings pattern for powder particles was made. Finally the significance of this unexpected ion milling effort on the alloy was discussed

Synthesis of $Cu_2ZnSnSe_4$ compound by solid state reaction using elemental powders

  • Wibowo, Rachmat Adhi;Alfaruqi, Muhammad H.;Jung, Woon-Hwa;Kim, Kyoo-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.134-137
    • /
    • 2009
  • Commercially available elemental powders of Cu, Zn, Sn and Se were employed for crystallizing a stannite-type $Cu_2ZnSnSe_4$ compound by means of solid state reaction. $Cu_2ZnSnSe_4$ reaction chemistry was also modeled based on differential-thermal analysis and X-ray powder diffraction results. It was observed that Se tends to react preferably with Cu to form CuSe and $CuSe_2$ phases at low reaction temperature. The formation of $Cu_5Zn_8$ intermetallic phase was found to be the intermediate reaction path for the binary ZnSe formation. A solid state reaction at $320^{\circ}C$ reacted elemental powderst obinary selenides of CuSe, ZnSe and SnSe completely. The crystallization of $Cu_2ZnSnSe_4$ was was detected to begin at $300^{\circ}C$ and its weight fraction increased with an increase of reaction temperature, which most probably formed from the reaction between $Cu_2SnSe_3$ and ZnSe.

  • PDF

Fabrication Process of Al2O3/Cu Nanocomposite by Dispersion and Reduction of Cu Oxide (CU Oxide 분산 및 환원에 의한 Al2O3/Cu 나노복합재료의 제조공정)

  • Ko, Se-Jin;Min, Kyung-Ho;Kang, Kae-Myung;Kim, Young-Do;Moon, In-Hyung
    • Korean Journal of Materials Research
    • /
    • v.12 no.8
    • /
    • pp.656-660
    • /
    • 2002
  • It was investigated that $Al_2$$O_3$/Cu nanocomposite powder could be optimally prepared by dispersion and reduction of Cu oxide, and suitably consolidated by employing pulse electric current sintering (PECS) process. $\alpha$-$Al_2$$O_3$ and CuO powders were used as elemental powders. In order to obtain $Al_2$O$_3$ embedded by finely and homogeneously dispersed CuO particles, the elemental powders were high energy ball milled at the rotating speed of 900 rpm, with the milling time varying up to 10 h. The milled powders were heat treated at $350^{\circ}C$ in H$_2$ atmosphere for 30 min to reduce CuO into Cu. The reduced powders were subsequently sintered by employing PECS process. The composites sintered at $1250^{\circ}C$ for 5 min showed the relative density of above 98%. The fracture toughness of the $Al_2$$O_3$/Cu nanocomposite was as high as 4.9MPa.$m^{1}$2//, being 1.3 times the value of pure $Al_2$$O_3$ sintered under the same condition.

Effect of Heat Treatment Environment on the Properties of Cold Sprayed Cu-15 at.%Ga Coating Material for Sputtering Target (스퍼터링 타겟용 저온 분사 Cu-15 at.%Ga 코팅 소재의 특성에 미치는 열처리 분위기의 영향)

  • Choi, Byung-Chul;Park, Dong-Yong;Kim, Hyung-Jun;Oh, Ik-Hyun;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.18 no.6
    • /
    • pp.552-561
    • /
    • 2011
  • This study attempted to manufacture a Cu-15 at.%Ga coating layer via the cold spray process and investigated the effect of heat treatment environment on the properties of cold sprayed coating material. Three kinds of heat treatment environments, $5%H_2$+argon, pure argon, and vacuum were used in this study. Annealing treatments were conducted at $200{\sim}800^{\circ}C$/1 hr. With the cold sprayed coating layer, pure ${\alpha}$-Cu and small amounts of $Ga_2O_3$ were detected in the XRD, EDS, EPMA analyses. Porosity significantly decreased and hardness also decreased with increasing annealing temperature. The inhomogeneous dendritic microstructure of cold sprayed coating material changed to the homogeneous and dense one (microstructural evolution) with annealing heat treatment. Oxides near the interface of particles could be reduced by heat treatment especially in vacuum and argon environments. Vacuum environment during heat treatment was suggested to be most effective one to improve the densification and purification properties of cold sprayed Cu-15 at.%Ga coating material.

An Investigation of Dispersion Behavior of Y2O3 Ceramic Particles in Hypo, Eutectic and Hyper Binary Al-Cu Cast Alloys (아공정, 공정, 과공정 조성의 Al-Cu 주조합금에서의 Y2O3 분말의 분산 거동에 대한 연구)

  • Park, J.J.;Kim, G.H.;Hong, S.M.;Lee, S.H.;Lee, M.K.;Rhee, C.K.
    • Journal of Powder Materials
    • /
    • v.14 no.2 s.61
    • /
    • pp.123-126
    • /
    • 2007
  • In this work, the dispersion behavior of $Y_2O_3$ particles in binary aluminum (Al)-copper (Cu) cast alloy was investigated with respect to Cu contents of 20 (hypoeutertic), 33 (eutectic) and 40 (hypereutectic) wt.%. In cases of hypo and hypereutectic compositions, SEM images revealed that the primary Al and ${\theta}$ phases were grown up at the beginning, respectively, and thereafter the eutectic phase was solidified. In addition, it was found that some of $Y_2O_3$ particles can be dispersed into the primary Al phase, but none of them are is observed inside the primary 6 phase. This different dispersion behavior of $Y_2O_3$ particles is probably due to the difference in the val- ues of specific gravity between $Y_2O_3$ particles and primary phases. At eutectic composition, $Y_2O_3$ particles were well dispersed in the matrix since there is few primary phases acting as an impediment site for particle dispersion during solidification. Based on the experimental results, it is concluded that $Y_2O_3$ particles are mostly dispersed into the eutectic phase in binary Al-Cu alloy system.

Microstructure and Electric Contact Properties of Spark Plasma Sintered Ta-Cu Composite (방전플라즈마 소결법으로 제조된 Ta-Cu의 미세조직 및 전기접점 특성)

  • Ju, Won;Kim, Young Do;Sim, Jae Jin;Choi, Sang-Hoon;Hyun, Soong Keun;Lim, Kyoung Mook;Park, Kyoung-Tae
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.377-383
    • /
    • 2017
  • Microstructure, electric, and thermal properties of the Ta-Cu composite is evaluated for the application in electric contact materials. This material has the potential to be used in a medium for a high current range of current conditions, replacing Ag-MO, W, and WC containing materials. The optimized SPS process conditions are a temperature of $900^{\circ}C$ for a 5 min holding time under a 30 MPa mechanical pressure. Comparative research is carried out for the calculated and actual values of the thermal and electric properties. The range of actual thermal and electric properties of the Ta-Cu composite are 50~300 W/mk and 10~90 %IACS, respectively, according to the compositional change of the 90 to 10 wt% Ta-Cu system. The results related to the electric contact properties, suggest that less than 50 wt% of Ta compositions are possible in applications of electric contact materials.

Rapid Sintering of TiCu by Pulsed Current Activated Heating and its Mechanical Properties (펄스전류활성 가열에 의한 나노구조의 TiCu 급속소결과 기계적 성질)

  • Du, Song-Lee;Kim, Na-Ri;Kim, Wonbaek;Cho, Sung-Wook;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.10
    • /
    • pp.922-928
    • /
    • 2010
  • Nanopowder of TiCu was synthesized by high-energy ball milling. A dense nanostructured TiCu was consolidated using a pulsed-current activated sintering method within 1 minute from mechanically synthesized powders of TiCu and horizontally milled powders of Ti+Cu. The grain size and hardness of the TiCu sintered from horizontally milled Ti+Cu powders and high-energy ball-milled TiCu powder were 68 nm, 27 nm and $490kg/mm^2$, $600kg/mm^2$, respectively.

Formation of Au Particles in Cu2-xICu2IIO3-δ (x ≈ 0.20; δ ≈ 0.10) Oxide Matrix by Sol-Gel Growth

  • Das, Bidhu Bhusan;Palanisamy, Kuppan;venugopal, Potu;Sandeep, Eesam;Kumar, Karrothu Varun
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.1
    • /
    • pp.29-33
    • /
    • 2017
  • Formation of Au particles in nonstoichiometric $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$) oxide from aniline + hydrochloric acid mixtures and chloroauric acid in the ratios 30 : 1; 60 : 1; 90 : 1 (S1-S3) by volume and 0.01 mol of copper acetate, $Cu(OCOCH_3)_2.H_2O$, in each case is performed by sol-gel growth. Powder x-ray diffraction (XRD) results show Au particles are dispersed in tetragonal nonstoichiometric dicopper (I) dicopper (II) oxides, $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$). Average crystallite sizes of Au particles determined using Scherrer equation are found to be in the approximate ranges ${\sim}85-140{\AA}$, ${\sim}85-150{\AA}$ and ${\sim}80-150{\AA}$ in S1-S3, respectively which indicate the formation of Au nano-micro size particles in $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$) oxides. Hysteresis behaviour at 300 K having low loop areas and magnetic susceptibility values ${\sim}5.835{\times}10^{-6}-9.889{\times}10^{-6}emu/gG$ in S1-S3 show weakly ferromagnetic nature of the samples. Broad and isotropic electron paramagnetic resonance (EPR) lineshapes of S1-S4 at 300, 77 and 8 K having $g_{iso}$-values ${\sim}2.053{\pm}0.008-2.304{\pm}0.008$ show rapid spin-lattice relaxation process in magnetic $Cu^{2+}$ ($3d^9$) sites as well as delocalized electrons in Au ($6s^1$) nano-micro size particles in the $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$) oxides. Broad and weak UV-Vis diffuse reflectance optical absorption band ~725 nm is assigned to $^2B_{1g}{\rightarrow}^2A_{1g}$ transitions, and the weak band ~470 nm is due to $^2B_{1g}{\rightarrow}^2E_g$ transitions from the ground state $^2B_{1g}$(${\mid}d_{x^2-y^2}$>) of $Cu^{2+}$ ($3d^9$) ions in octahedral coordination having tetragonal distortion.