DOI QR코드

DOI QR Code

An Investigation of Dispersion Behavior of Y2O3 Ceramic Particles in Hypo, Eutectic and Hyper Binary Al-Cu Cast Alloys

아공정, 공정, 과공정 조성의 Al-Cu 주조합금에서의 Y2O3 분말의 분산 거동에 대한 연구

  • Park, J.J. (Nuclear Nanomaterials Development Lab., Korea Atomic Energy Research Institute) ;
  • Kim, G.H. (Nuclear Nanomaterials Development Lab., Korea Atomic Energy Research Institute) ;
  • Hong, S.M. (Nuclear Nanomaterials Development Lab., Korea Atomic Energy Research Institute) ;
  • Lee, S.H. (Nuclear Nanomaterials Development Lab., Korea Atomic Energy Research Institute) ;
  • Lee, M.K. (Nuclear Nanomaterials Development Lab., Korea Atomic Energy Research Institute) ;
  • Rhee, C.K. (Nuclear Nanomaterials Development Lab., Korea Atomic Energy Research Institute)
  • 박진주 (한국원자력연구원, 원자력나노소재응용랩) ;
  • 김광호 (한국원자력연구원, 원자력나노소재응용랩) ;
  • 홍성모 (한국원자력연구원, 원자력나노소재응용랩) ;
  • 이상훈 (한국원자력연구원, 원자력나노소재응용랩) ;
  • 이민구 (한국원자력연구원, 원자력나노소재응용랩) ;
  • 이창규 (한국원자력연구원, 원자력나노소재응용랩)
  • Published : 2007.04.28

Abstract

In this work, the dispersion behavior of $Y_2O_3$ particles in binary aluminum (Al)-copper (Cu) cast alloy was investigated with respect to Cu contents of 20 (hypoeutertic), 33 (eutectic) and 40 (hypereutectic) wt.%. In cases of hypo and hypereutectic compositions, SEM images revealed that the primary Al and ${\theta}$ phases were grown up at the beginning, respectively, and thereafter the eutectic phase was solidified. In addition, it was found that some of $Y_2O_3$ particles can be dispersed into the primary Al phase, but none of them are is observed inside the primary 6 phase. This different dispersion behavior of $Y_2O_3$ particles is probably due to the difference in the val- ues of specific gravity between $Y_2O_3$ particles and primary phases. At eutectic composition, $Y_2O_3$ particles were well dispersed in the matrix since there is few primary phases acting as an impediment site for particle dispersion during solidification. Based on the experimental results, it is concluded that $Y_2O_3$ particles are mostly dispersed into the eutectic phase in binary Al-Cu alloy system.

Keywords

References

  1. R. J. Arsenault: Mater. Sci. Eng., 44 (1984) 171 https://doi.org/10.1016/0025-5416(84)90101-0
  2. V. C. Nardone and K. M. Prewo: Scripta Metall., 29 (1986) 43 https://doi.org/10.1016/0036-9748(86)90210-3
  3. A. Ibrahim, F. A. Mohamed and E. J. Lavernia: J. Mater. Sci., 26 (1991) 1137 https://doi.org/10.1007/BF00544448
  4. N. Ramakrishnan: Acta Mater., 44 (1996) 69 https://doi.org/10.1016/1359-6454(95)00150-9
  5. J. R. Groza: Int. J. Powder Metall., 35 (1999) 59
  6. L. M. Peng: Int. J. Mater. Process. Technol., 18 (2003) 215 https://doi.org/10.1504/IJMPT.2003.003593
  7. R. Zhong, H. T. Cong and P. X. Hou: Carbon, 41 (2003) 848 https://doi.org/10.1016/S0008-6223(02)00427-X
  8. H. Hu: Scripta Mater., 39 (1998) 1015 https://doi.org/10.1016/S1359-6462(98)00281-4
  9. B. W. Chua, L. Lu and M. O. Lai: Compos. Struct., 47 (1999) 595 https://doi.org/10.1016/S0263-8223(00)00031-3
  10. L. Hu and E. Wang: Mater. Sci. Eng., A278 (2000) 267
  11. R. A. Saravanan and M. K. Surappa: Mater. Sci. Eng., A276 (2000) 108 https://doi.org/10.1016/S0921-5093(99)00498-0
  12. S. C. Sharma, B. Anand and M. Krishna: Wear, 241 (2000) 33 https://doi.org/10.1016/S0043-1648(00)00349-5
  13. H. Ferkel and B. L. Mordike: Mater. Sci. Eng., A298 (2001) 193 https://doi.org/10.1016/S0921-5093(00)01283-1
  14. C. Mayencourt and R. Schaller: Mater. Sci. Eng., A325 (2005) 286 https://doi.org/10.1016/S0921-5093(01)01454-X
  15. J. Hashim, L. Looney and M. S. J. Hashmi: J. Mater. Process. Technol., 92-93 (1999) 1 https://doi.org/10.1016/S0924-0136(99)00118-1
  16. H. Chang, C. H. Pitt and G. B. Alxander: J. Mater. Sci. Lett., 12 (1993) 215 https://doi.org/10.1007/BF00539802
  17. Y. H. Seo and C. G. Kang: Compos. Sci. Technol., 59 (1999) 643 https://doi.org/10.1016/S0266-3538(98)00123-7
  18. A. R. Kennedy and A.E. Karantzalis: Mater. Sci. Eng., A264 (1999) 122 https://doi.org/10.1016/S0921-5093(98)01102-2