• Title/Summary/Keyword: Cu Powder

Search Result 1,105, Processing Time 0.03 seconds

Effect of Cu During Non-isothermal Hydrogen Reduction of $MoO_3$

  • Kim, Gil-Su;Kim, Dae-Gun;Oh, Sung-Tag;Suk, Myung-Jin;Kim, Young-Do
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1329-1330
    • /
    • 2006
  • The effect of Cu on the hydrogen reduction of $MoO_3$ powders was investigated by measuring the humidity change during a non-isothermal process of hydrogen reduction. The presence of Cu induced a shift in the reduction temperature and strongly affected the reduction processes of $MoO_3\rightarrowMo_4O_{11}\rightarrowMoO_2$, which comprised the contained chemical vapor transport of $MoO_x(OH)_2$. This study suggests that the surface of the Cu grains acts as a nucleation site for the reduction of $MoO_x(OH)_2$ to $MoO_2$ particles from $MoO_3$ or $Mo_4O_{11}$. Such an activated reduction process results in the deposition of Mo and $MoO_2$ particles on the surface of the Cu.

  • PDF

Production and Properties of Amorphous TiCuNi Powders by Mechanical Alloying and Spark Plasma Sintering

  • Kim, J.C.;Kang, E.H.;Kwon, Y.S.;Kim, J.S.;Chang, Si-Young
    • Journal of Powder Materials
    • /
    • v.17 no.1
    • /
    • pp.36-43
    • /
    • 2010
  • In present work, amorphous TiCuNi powders were fabricated by mechanical alloying process. Amorphization and crystallization behaviors of the TiCuNi powders during high-energy ball milling and subsequent microstructure changes were studied by X-ray diffraction and transmission electron microscope. TEM samples were prepared by the focused ion beam technique. The morphology of powders prepared with different milling times was observed by field-emission scanning electron microscope and optical microscope. The powders developed a fine, layered, homogeneous structure with milling times. The crystallization behavior showed that glass transition, $T_g$, onset crystallization, $T_x$, and super cooled liquid range ${\Delta}T=T_x-T_g$ were 628, 755 and 127K, respectively. The as-prepared amorphous TiCuNi powders were consolidated by spark plasma sintering process. Full densified TiCuNi samples were successfully produced by the spark plasma sintering process. Crystallization of the MA powders happened during sintering at 733K.

A study on the developmenet of Anode Material for Molten Carbonate Fuel Celt - Cu-base electrode- (용융탄산염 연료전지의 양극 및 대체재료의 제작에 관한 연구 -Cu-base 전극에 대하여-)

  • 박재우;김용덕;황응림;김선진;강성군
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.4
    • /
    • pp.243-254
    • /
    • 1995
  • The fabrication process of Cu-base anode for replacing Ni-base anode of molten carbonate fuel cell was investigated. Electrochemical performance and thermal stability of Cu-base anode were also investigated. Green sheet was prepared by mixing Cu and Ni powder with 1.5wt% methylcellulose and 100wt% water. The pore-size distribution of the Cu-base anode sintered at $800^{\circ}C$ for 30min showed almost uniform pore-size ranging from 4 to 20$\mu\textrm{m}$ and it was considered suitable for MCFC anode. Cu-Ni anode containing between 35 to 50wt% Ni exhibited current density of 111mA/$\textrm{cm}^2$ at 100mV overpotential and it was almost the some value for pure Ni anode. The sintering resistance of Cu-Ni increased with an increase of Ni addition. It was considered that the increase of sintering resistance was due to the decrease of diffusion rate of Cu and Ni with increasing the addition of Ni in Cu-Ni alloy.

  • PDF

Transparent Conductive Films Composite with Copper Nanoparticle/Graphene Oxide Fabricated by dip Process and Electrospinning

  • Kim, Jin-Un;Kim, Gyeong-Min;Kim, Yong-Ho;Kim, Su-Yong;Jo, Su-Ji;Lee, Eung-Sang;Seok, Jung-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.382.2-382.2
    • /
    • 2014
  • We explain a method to fabricate multi-layered transparent conductive films (TCF) using graphene oxide (GO), copper powder and polyurethane (PU) solution. The flexible graphene nanosheets (GNSs) serve as nanoscale connection between conductive copper nanoparticles (CuNps) and PU nanofibers, resulting in a highly flexible TCF. To fabricate conductive films with high transmittance, polyurethane (PU) nanofibers were used for a conductive network consisting of CuNps and GNSs (CuNps-GNSs). In this experiment, copper powder and graphene oxides were mixed in deionized water with the ultrasonication for 2 h. NaBH4 solution is used as a reduction agents of CuNps and GNSs (CuNps-GNSs) under a nitrogen atmosphere in the oil bath at 100% for 24 h to mixed. The purified and dispersed CuNp-GNS were obtained in deionized water, and diluted to a 10wt.% based on the contents of GNSs. Polyurethane (PU) nanofibers on a PET substrate were formed by electrospinning method. PET slides coated with the PU nanofibers were immersed into CuNp-GNS solution for several second, rinsed briefly in deionized water, and dried to obtain self-assembled CuNp-GNS/PU films. The morphology of the multi-layered films were characterized with a field emission scanning electron microscope (FE-SEM, Hitachi S-4700) and atomic force microscope (AFM, PSIA XE-100). The electrical property was analysed by the I-V measurement system and the optical property was measured by the UV/VIS spectroscopy.

  • PDF

A Study on the Improvement of Storage Stability of Solder Paste Using Multiple size of solder Powder (다양한 크기의 솔더 파우더를 이용한 솔더 페이스트의 저장안정성 향상에 관한 연구)

  • Lim, Chan-Kyu;Gyun, Bo-Suk;Son, Min-Jung;Kim, Inyoung;Yang, Sangsun;Nam, Su-Yong
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.395-399
    • /
    • 2017
  • Solder paste is widely used as a conductive adhesive in the electronics industry. In this paper, nano and microsized mixed lead-free solder powder (Sn-Ag-Cu) is used to manufacture solder paste. The purpose of this paper is to improve the storage stability using different types of solvents that are used in fabricating the solder paste. If a solvent of sole acetate is used, the nano sized solder powder and organic acid react and form a Sn-Ag-Cu malonate. These formed malonates create fatty acid soaps. The fatty acid soaps absorb the solvents and while the viscosity of the solder paste rises, the storage stability and reliability decrease. When ethylene glycol, a dihydric alcohol, is used the fatty acid soaps and ethylene glycol react, preventing the further creation of the fatty acid soaps. The prevention of gelation results in an improvement in the solder paste storage ability.

Study on the preparation of BaPbO3 Additive for Improvement of YBCO Superconductor (YBCO 초전도체 특성 향상을 위한 첨가제 $BaPbO_3$ 제작에 관한 연구)

  • Cho, Yong-Joon;Soh, Dea-Wha;Park, Seong-Bum;Fan, Zhanguo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.55-58
    • /
    • 2003
  • [ $YBa_2Cu_3Ox$ ](YBCO) oxide superconductor was prepared by sol-gel method to improve its superconducting properties, and it was made to be a fine powder, which has the same property of solid state reacted powder. $BaPbO_3$ was synthesized with $BaCO_3$, BaO, PbO, and $PbO_2$ and analyzed by XRD. YBCO superconductor was prepared by use of sol-gelled YBCO powder and additive $BaPbO_3$ and its critical temperature and transition temperature were shown as 91.9 K, 3.7 K respectively in case 20 wt.% $BaPbO_3$ was added to pure sol-gelled YBCO powder.

  • PDF

Biopharmaceutical studies on copper(II) chelates of sulfanilamide derivatives (Sulfanilamide유도체의 동(II)착화합물에 대한 생물약제학적 연구)

  • 김재백
    • YAKHAK HOEJI
    • /
    • v.15 no.2
    • /
    • pp.41-52
    • /
    • 1971
  • Cu(II) chelates of several sulfanilamide derivatives (Sulfa-Cu) were prepared and their effects on solubility, absorptivity in intestinal lumen, biding tendency with serum protein and erythrocytes, concentration in rabbit blood, and acetylation rate were studied in comparison with their free ligand forms. For solubility concerned, the partition coefficients of Sulfa-Cu are decreased as following order: Sulfadimethoxine Copper chelate (SDM-Cu), Sulfamethoxypyridazine Copper chelate (SD-Cu), Sulfamerazine Copper chelate (SM-Cu), Sulfaisoxazole Copper chelate (SIX-Cu). The partition coefficients of SDM-Cu and ST-Cu were much greater than those of ligands. this phenomenone acounts for the rapid absorption of SDM-Cu and ST-Cu in the rat small intestine (in situ). The Sulfa-Cu were absorbed at the intestinal lumen of a rat in the rate of first order and there was no difference between long acting sulfa drugs and their Cu0chelates in biological half lives. In binding experiments, sulfa-Cu binded with serum protein in lower ratio than their ligands except SIX-Cu. On other hand, acetylation rates of sulfa-Cu were higher than those of free sulfa drugs and the acetylation rate were higher than those of free sulfa drugs and powder. In a experiment on Sulfa-Cu concentration in rabbit blood, the half lives of SD-Cu, SIX-cu, ST-Cu, and SM-Cu were longer than those of their ligands. Above all, the half life of SD-Cu appeared to be approximately 3.5 times logner than that of corresponding ligand, SD. When absorption of sulfa drugs or sulfa-Cu at the small intestinal lumen of a rat and the concentration in rabbit blood after absorption were compared, it was found that there was not always conrrelated.

  • PDF

Novel Low-Volume Solder-on-Pad Process for Fine Pitch Cu Pillar Bump Interconnection

  • Bae, Hyun-Cheol;Lee, Haksun;Eom, Yong-Sung;Choi, Kwang-Seong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.55-59
    • /
    • 2015
  • Novel low-volume solder-on-pad (SoP) process is proposed for a fine pitch Cu pillar bump interconnection. A novel solder bumping material (SBM) has been developed for the $60{\mu}m$ pitch SoP using screen printing process. SBM, which is composed of ternary Sn-3.0Ag-0.5Cu (SAC305) solder powder and a polymer resin, is a paste material to perform a fine-pitch SoP in place of the electroplating process. By optimizing the volumetric ratio of the resin, deoxidizing agent, and SAC305 solder powder; the oxide layers on the solder powder and Cu pads are successfully removed during the bumping process without additional treatment or equipment. The Si chip and substrate with daisy-chain pattern are fabricated to develop the fine pitch SoP process and evaluate the fine-pitch interconnection. The fabricated Si substrate has 6724 under bump metallization (UBM) with a $45{\mu}m$ diameter and $60{\mu}m$ pitch. The Si chip with Cu pillar bump is flip chip bonded with the SoP formed substrate using an underfill material with fluxing features. Using the fluxing underfill material is advantageous since it eliminates the flux cleaning process and capillary flow process of underfill. The optimized interconnection process has been validated by the electrical characterization of the daisy-chain pattern. This work is the first report on a successful operation of a fine-pitch SoP and micro bump interconnection using a screen printing process.

Fabrication, Microstructure and Adhesion Properties of BCuP-5 Filler Metal/Ag Plate Clad Material by Using High Velocity Oxygen Fuel Thermal Spray Process (고속 화염 용사 공정을 이용한 스위칭 소자용 BCuP-5 filler 금속/Ag 기판 클래드 소재의 제조, 미세조직 및 접합 특성)

  • Joo, Yeun A;Cho, Yong-Hoon;Park, Jae-Sung;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.226-232
    • /
    • 2022
  • In this study, a new manufacturing process for a multilayer-clad electrical contact material is suggested. A thin and dense BCuP-5 (Cu-15Ag-5P filler metal) coating layer is fabricated on a Ag plate using a high-velocity oxygen-fuel (HVOF) process. Subsequently, the microstructure and bonding properties of the HVOF BCuP-5 coating layer are evaluated. The thickness of the HVOF BCuP-5 coating layer is determined as 34.8 ㎛, and the surface fluctuation is measured as approximately 3.2 ㎛. The microstructure of the coating layer is composed of Cu, Ag, and Cu-Ag-Cu3P ternary eutectic phases, similar to the initial BCuP-5 powder feedstock. The average hardness of the coating layer is 154.6 HV, which is confirmed to be higher than that of the conventional BCuP-5 alloy. The pull-off strength of the Ag/BCup-5 layer is determined as 21.6 MPa. Thus, the possibility of manufacturing a multilayer-clad electrical contact material using the HVOF process is also discussed.

Effect of Post Heat Treatment on the Microstructure and Mechanical Properties of BCuP-5 Filler Metal Coating Layers Fabricated by High Velocity Oxygen Fuel Thermal Spray Process on Ag Substrate (고속 화염 용사 공정으로 제조된 BCuP-5 필러 금속 코팅층/Ag 기판 클래드 소재의 후열처리에 따른 미세조직 및 기계적 특성 변화)

  • Park, So-Yeon;Youn, Seong-June;Park, Jae-Sung;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.29 no.4
    • /
    • pp.283-290
    • /
    • 2022
  • A Cu-15Ag-5P filler metal (BCuP-5) is fabricated on a Ag substrate using a high-velocity oxygen fuel (HVOF) thermal spray process, followed by post-heat treatment (300℃ for 1 h and 400℃ for 1 h) of the HVOF coating layers to control its microstructure and mechanical properties. Additionally, the microstructure and mechanical properties are evaluated according to the post-heat treatment conditions. The porosity of the heat-treated coating layers are significantly reduced to less than half those of the as-sprayed coating layer, and the pore shape changes to a spherical shape. The constituent phases of the coating layers are Cu, Ag, and Cu-Ag-Cu3P eutectic, which is identical to the initial powder feedstock. A more uniform microstructure is obtained as the heat-treatment temperature increases. The hardness of the coating layer is 154.6 Hv (as-sprayed), 161.2 Hv (300℃ for 1 h), and 167.0 Hv (400℃ for 1 h), which increases with increasing heat-treatment temperature, and is 2.35 times higher than that of the conventional cast alloy. As a result of the pull-out test, loss or separation of the coating layer rarely occurs in the heat-treated coating layer.