• Title/Summary/Keyword: Cu Powder

Search Result 1,105, Processing Time 0.022 seconds

Effects of Mixing Ratio of the Milled Powder on Microstructure and Mechanical Properties of Sintered Valve Seats (소결 밸브시트의 미세조직 및 기계적 성질에 미치는 볼밀 분말 혼합비의 영향)

  • 최성태;박종관;최창수;정인상
    • Journal of Powder Materials
    • /
    • v.10 no.2
    • /
    • pp.89-96
    • /
    • 2003
  • The recent trend of miniaturization and high performance of vehicle engines has put an urgent necessity for the development of valve seats which can operate under more severe conditions. In order to develope valve seat material that has the most excellent wear resistance at operating temperature of engine through improvement of the progress of work. the effects of mixing ratio of the milled powder on sintered and Cu-infiltrated properties of sintered valve seats have been studied. The resultant radial crushing strength and hardness of sintered specimens were gradually increased with increasement of volume of milled powders. It is because increasement of sintering density by increasing of surface diffusion. The hardness of Cu-infiltrated specimens became lower than that of the commercial powders as the increasement of volume of milled powders. It was due to the decrease of the amount of the martensite. By results of this research, It has been found that martensite is formed around of the Cu-infiltrated site and the decrease of the amount of the martensite is due to decrease of the amount of the Cu-infiltrated site by the decrease of gas channel.

Manufacture of Ultra Fine CuO Powder from Waste Copper Chloride Solution by Spray Pyrolysis Process

  • Yu, Jae-Keun;Ahn, Zou-Sam;Sohn, Jin-Gun
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.165-170
    • /
    • 2001
  • The main purpose of this study is to generate a fine copper oxide powder of high purity, with a compact structure and a uniform particle size by a spray pyrolysis process. The raw material is a waste copper chloride solution formed in the manufacturing process of Print Circuit Board (PCB). This study also examines the influences of various factors on the properties of the generated powder. These factors include the reaction temperature, the inflow speed of the raw material solution, the inflow speed of the air, the size of the nozzle tip, and the concentration of the raw material solution. It is discovered that, as the reaction temperature increases from 80$0^{\circ}C$ to 100$0^{\circ}C$ , the particle size of the generated powder increases accordingly, and that the structure of the powder becomes much more compact. When the reaction temperature is 100$0^{\circ}C$, the particle size of the generated powder increases as the concentration of copper in the raw material solution increases to 40g/l, decreases as the concentration increases up to 120g/l, and increases again as the concentration reaches 200g/1. In the case of a lower concentration of the raw material solution, the generated powder appears largely in the form of CuO. As the concentration increases, however, the powder appears largely in the form of CuCl. When the concentration of copper in the raw material solution is 120g/1, the particle size of the generated powder increases as the inflow speed of the raw material solution increases. When the concentration of copper in the raw material solution is 120g/1, there is no evident change in the particle size of the generated powder as the size of the nozzle tip and the air pressure increases. When the concentration is 40g/1, however, the particle size keeps increasing until the air pressure increases to 0.5kg/$\textrm{cm}^2$, but decreases remarkably as the air pressure exceeds 0.5kg/$\textrm{cm}^2$.

  • PDF

Microstructural Feature and Aging Characteristics of Spray-Formed Cu-5Ni-10Sn Alloy (가스분무성형 Cu-5Ni-10Sn 합금의 미세조직 및 시효강화)

  • Roh, Dae-Gyun;Kang, Hee-Soo;Baik, Kyeong-Ho
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.317-321
    • /
    • 2012
  • In this study, Cu-5Ni-10Sn(wt%) spinodal alloy was manufactured by gas atomization spray forming, and the microstructural features and mechanical properties of Cu-5Ni-10Sn alloy have been investigated during homogenization, cold working and age-hardening. The spray formed Cu-5Ni-10Sn alloy consisted of an equiaxed microstructure with a mixture of solid solution ${\alpha}$-(CuNiSn) grains and lamellar-structure grains. Homogenization at $800^{\circ}C$ and subsequent rapid quenching formed a uniform solid solution ${\alpha}$-(CuNiSn) phase. Direct aging at $350^{\circ}C$ from the homogenized Cu-5Ni-10Sn alloy promoted the precipitation of finely distributed ${\gamma}$' or ${\gamma}-(Cu,Ni)_3Sn$ phase throughout the matrix, resulting in a significant increase in microhardness and tensile strength. Cold working prior to aging was effective in strengthening Cu-5Ni-10Sn alloy, which gave rise to a maximum tensile strength of 1165 MPa. Subsequent aging treatment slightly reduced the tensile strength to 1000-1100 MPa due to annealing effects.

Study on Aerosol Deposition Behavior of Cu Films According to Particle Size (입자 사이즈에 따른 Cu 필름의 에어로졸 성막 거동에 대한 연구)

  • Lee, Dong-Won;Oh, Jong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.4
    • /
    • pp.235-240
    • /
    • 2017
  • The effect of particle sizes on the aerosol deposition (AD) of Cu films is investigated in order to understand the deposition behaviors of metal powder during the AD process. The Cu coatings fabricated by using $2{\mu}m$ Cu powders had a dense microstructure, a high deposition rate ($1.6{\pm}0.2{\mu}m/min$), and low resistance ($9.42{\pm}0.4{\mu}{\Omega}{\cdot}cm$) compared to that from using Cu powder with a particle size greater than $5{\mu}m$. Also, from estimating the internal micro-strain of Cu films, the Cu coatings fabricated by using $2{\mu}m$ Cu particles exhibited a high micro-strain value of $3.307{\times}10^{-3}$. On the other hand, the strain of Cu coatings fabricated with $5{\mu}m$ particles was decreased to $2.76{\times}10^{-3}$. These results seem to show that the impacted Cu particles are compressed and flattened by shock waves, and that their bonding is associated with the high internal micro-strain caused by plastic deformation.

Synthesis and Characterization of Cordierite Glass-Ceramics for Low Firing Temperature Substrate; (IV) Metallizing by Using Cu Powder Coated by Sol-Gel Method (저온소결 세라믹기판용 Cordierite계 결정화유리의 합성 및 특성조사에 관한 연구;(IV) Sol-Gel법으로 코팅한 Cu분말을 이용한 Metallizing)

  • 김병호;문성훈;이근헌;임대순
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.4
    • /
    • pp.427-435
    • /
    • 1994
  • Cu-metallized low firing temperature substrates were synthesized by cofiring green sheet of cordierite-based glass with Cu. By Sol-Gel method, Cu powder was coated with borosilicate gel which should act as a glass frit in Cu paste during cofiring. Theoretical weight ratios of Glass/Cu were controlled to be 2.5, 5, 10 and 15% by varying alkoxide concentrations. Average particle size of coated Cu was 0.629~0.674 ${\mu}{\textrm}{m}$ in comparison to that of as-received Cu(0.596 ${\mu}{\textrm}{m}$), which increased with alkoxide concentration but did not increase above certain concentration. The weight ratios of coated layer were 2.11~5.37%. The properties of Cu-metallized low firing temperature substrate, cofired at 90$0^{\circ}C$ for 1h under H2/N2 atmosphere, were as follows; sheet resistance was 13~43 m{{{{ OMEGA }}/$\square$, adhesion strength was 1.0~2.1 kgf/$\textrm{mm}^2$. From the observations of SEM photographs, the gel coated on Cu performed excellently as a glass frit.

  • PDF

Fabrication and Characterization of Highly Reactive Al/CuO Nano-composite using Graphene Oxide (산화그래핀을 적용한 고반응성 Al/CuO 나노복합재 제조 및 분석)

  • Lim, YeSeul
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.220-224
    • /
    • 2019
  • The aluminum (Al)/copper oxide (CuO) complex is known as the most promising material for thermite reactions, releasing a high heat and pressure through ignition or thermal heating. To improve the reaction rate and wettability for handling safety, nanosized primary particles are applied on Al/CuO composite for energetic materials in explosives or propellants. Herein, graphene oxide (GO) is adopted for the Al/CuO composites as the functional supporting materials, preventing a phase-separation between solvent and composites, leading to a significantly enhanced reactivity. The characterizations of Al/CuO decorated on GO(Al/CuO/GO) are performed through scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy mapping analysis. Moreover, the functional bridging between Al/CuO and GO is suggested by identifying the chemical bonding with GO in X-ray photoelectron spectroscopy analysis. The reactivity of Al/CuO/GO composites is evaluated by comparing the maximum pressure and rate of the pressure increase of Al/CuO and Al/CuO/GO. The composites with a specific concentration of GO (10 wt%) demonstrate a well-dispersed mixture in hexane solution without phase separation.