DOI QR코드

DOI QR Code

가스분무성형 Cu-5Ni-10Sn 합금의 미세조직 및 시효강화

Microstructural Feature and Aging Characteristics of Spray-Formed Cu-5Ni-10Sn Alloy

  • Roh, Dae-Gyun (Department of Nanomaterials Engineering, Chungnam National University) ;
  • Kang, Hee-Soo (Department of Nanomaterials Engineering, Chungnam National University) ;
  • Baik, Kyeong-Ho (Department of Nanomaterials Engineering, Chungnam National University)
  • 투고 : 2012.07.05
  • 심사 : 2012.08.17
  • 발행 : 2012.08.28

초록

In this study, Cu-5Ni-10Sn(wt%) spinodal alloy was manufactured by gas atomization spray forming, and the microstructural features and mechanical properties of Cu-5Ni-10Sn alloy have been investigated during homogenization, cold working and age-hardening. The spray formed Cu-5Ni-10Sn alloy consisted of an equiaxed microstructure with a mixture of solid solution ${\alpha}$-(CuNiSn) grains and lamellar-structure grains. Homogenization at $800^{\circ}C$ and subsequent rapid quenching formed a uniform solid solution ${\alpha}$-(CuNiSn) phase. Direct aging at $350^{\circ}C$ from the homogenized Cu-5Ni-10Sn alloy promoted the precipitation of finely distributed ${\gamma}$' or ${\gamma}-(Cu,Ni)_3Sn$ phase throughout the matrix, resulting in a significant increase in microhardness and tensile strength. Cold working prior to aging was effective in strengthening Cu-5Ni-10Sn alloy, which gave rise to a maximum tensile strength of 1165 MPa. Subsequent aging treatment slightly reduced the tensile strength to 1000-1100 MPa due to annealing effects.

키워드

참고문헌

  1. W. A. Soffa and D. E. Laughlin: Prog. Mater. Sci., 49 (2004) 347. https://doi.org/10.1016/S0079-6425(03)00029-X
  2. F. Kohler, L. Germond, J. D. Wagniere and M. Rappaz: Acta Mater., 57 (2009) 56. https://doi.org/10.1016/j.actamat.2008.08.058
  3. J. D. Hwang, B. J. Li, W. S. Hwang and C. T. Hu: J. Mater. Eng. Perform., 7 (1998) 495. https://doi.org/10.1361/105994998770347648
  4. S. H. Shim, H. S. Kang and K. H. Baik: J. Kor. Powder Metall. Inst., 17 (2010) 477. https://doi.org/10.4150/KPMI.2010.17.6.477
  5. L. H. Schwartz, S. Mahajan and J. T. Plewes: Acta. Metall., 22 (1974) 601. https://doi.org/10.1016/0001-6160(74)90157-6
  6. R. K. Ray and S. C. Narayanan: Metall. Trans. 13A (1982) 565.
  7. S. Suzuki, N. Shibutani, K. Mimura, M. Isshiki and Y. Waseda: J. Alloys Compounds, 417 (2006) 116. https://doi.org/10.1016/j.jallcom.2005.09.037
  8. V. C. Srivastava, A. Schneider and V. Uhlenwinke: J. Mater. Proc. Tech., 147 (2004) 174. https://doi.org/10.1016/j.jmatprotec.2003.12.013
  9. D. Zhao, Q. M. Dong, P. Liu, B. X. Kang, J. L. Huang and Z. H. Jin: Mater. Sci. Eng. A, A361 (2003) 93. https://doi.org/10.1016/S0921-5093(03)00496-9
  10. P. Kratochvil, J. Mencl, J. Pesicka and S. N. Komnik: Acta Metall., 32 (1984) 1493. https://doi.org/10.1016/0001-6160(84)90095-6
  11. P. Sahu and S. K. Pradhan: M. De: J. Alloys Comp., 377 (2004) 103. https://doi.org/10.1016/j.jallcom.2003.10.019
  12. J. C. Zhao and M. R. Notis: Acta Materialia, 46 (1998) 4203. https://doi.org/10.1016/S1359-6454(98)00095-0
  13. P. Virtanen, T. Tiainen and T. Lepisto: Mater. Sci. Eng. A, 251 (1998) 269. https://doi.org/10.1016/S0921-5093(98)00498-5
  14. Y. C. Jung, C. J. Kim, J. M. Lee and S. J. Han: J. Kor. Inst. Met. Mater., 36 (1998) 1.
  15. B. Cantor, K. H. Baik and P. S. Grant: Prog. Mater. Sci., 42 (1997) 373. https://doi.org/10.1016/S0079-6425(97)00033-9
  16. P. S. Grant: Prog. Mater. Sci., 39 (1995) 497. https://doi.org/10.1016/0079-6425(95)00004-6
  17. K. H. Baik, P. S. Grant and B. Cantor: Acta Materialia, 52 (2004) 199. https://doi.org/10.1016/j.actamat.2003.09.006