• Title/Summary/Keyword: Cu/Low-k

Search Result 1,313, Processing Time 0.035 seconds

EFFECT OF THE ADDITION OF Ni ON GIANT MAGNETORESISTANCE OF Cu-Co AGED RIBBONS

  • Kim, I.J.;Echigoya, J.;Fukamichi, K.;Shimada, Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.456-460
    • /
    • 1995
  • Giant magnetoresistance(GMR) of $Cu_{85-x}Co_{15}Ni_{x}$ melt-spu ribbons is closely correlated with the microstructure produced by the spinodal decomposition. The solid solution range is extanded by the replacement of Cu by Ni in the as-quenched state. The wavelengths obtained by subsequent isothermal aging in Cu-Co-Ni ribbons are shorter than those in Cu-Co binary ribbons, resulting in the increase of the surface-to-volume ratio. The largest MR ratio of 8 % in high field has been achieved in the $Cu_{80}Co_{15}Ni_{5}$ aged ribbon. The field dependence of MR ratio in low fields becomes larger with the Ni content.

  • PDF

Cu as an Electrode Material in TFT-LCD Products

  • Park, C.W.;Cho, W.H.;Kim, K.T.;Choi, H.C.;Oh, C.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.661-663
    • /
    • 2003
  • In this paper, production of TFT-LCD adopting Cu electrode, in spite of low resistivity, which was not commercially applied to TFT LCD products because of processibility, reliability problems etc. was mentioned. Based on the test result of etch and strip process of Cu electrode, the TFT device using Cu material shows the same characteristics as the conventional TFT devices. We describe the realization of a 20.1" UXGA model which was firstly applied to Cu electrode.

  • PDF

PROPERTIES OF Mo COMPOUNDS AS A DIFFUSION BARRIER BETWEEN Cu AND Si PREPARED BY CO-SPUTTERING

  • Lee, Yong-Hyuk;Park, Jun-Yong;Bae, Jeong-Woon;Yeom, Geun-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.433-439
    • /
    • 1999
  • In this study, the diffusion barrier properties of $1000\AA$ thick molybdenum compounds (Mox=1-5 Si) were investigated using sheet resistance measurements, X-ray diffractometry (XRD), and Rutherford back scattering spectrometry (RBS). Each barrier material was deposited by the de and rf magnetron co-sputtering of Mo and Si, respectively, and annealed at $500-700^{\circ}C$ for 30 min in vacuum. Each barrier material was failed at low temperatures due to Cu diffusion through grain boundaries and defects of barrier thin films or through the reaction of Cu with Si within Mo-barrier thin films. It was found that Mo rich thin films were less effective than Si rich films to Cu penetration activating Cu reaction with the substrate at a temperature higher than $500^{\circ}C$.

  • PDF

Leaf Thinning and Fruit Quality of 'Hongro'/M.9 Apple Trees by Foliar Application of Cu-EDTA and Fe-EDTA

  • Lim, Heon-Kyu;Shin, Hyunsuk;Son, In-Chang;Oh, Youngjae;Kim, Keumsun;Oh, Sung-Il;Oh, Sewon;Kim, Daeil
    • Korean Journal of Plant Resources
    • /
    • v.32 no.6
    • /
    • pp.677-682
    • /
    • 2019
  • Hand leaf thinning for improvement of fruit coloration and quality is one of the most labor-consuming works in Korean apple cultivation. The study was aimed at investigating whether foliar application of two chelate compounds (Cu-EDTA, Fe-EDTA) could defoliate effectively 'Hongro'/M.9 apple leaves and enhance fruit coloration and quality. At 30 days before harvest, foliar spray with two chelate compounds defoliated significantly the apple leaves. Chelate treatments did not affect the leaf chlorophyll content. High concentration of chelates decreased drastically photosynthetic rate of true leaves, and then it stayed in low levels, whereas low levels of chelates reduced sharply the photosynthetic rate but it was gradually restored over time. Cu-EDTA regardless of its concentration triggered higher defoliation compared to Fe-EDTA. Consequently, higher defoliation improved light interception of fruits and accumulated more anthocyanin. Particularly, Cu-EDTA could target mainly fruit cluster leaves which affect directly light interception of the fruits, i.e. more selective defoliants compared to Fe-EDTA. However, 3% Cu-EDTA rather defoliated excessively, accompanying with reduction of fruit weight and soluble solids. Therefore, our results suggest that 1% Cu-EDTA which defoliates properly the fruit cluster leaves could improve coloration and quality of 'Hongro'/M.9 apple fruits.

Novel Environmentally Benign and Low-Cost Pd-free Electroless Plating Method Using Ag Nanosol as an Activator

  • Kim, Jun Hong;Oh, Joo Young;Song, Shin Ae;Kim, Kiyoung;Lim, Sung Nam
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.215-221
    • /
    • 2017
  • The electroless plating process largely consists of substrate cleaning, seed formation (activator formation), and electroless plating. The most widely used activator in the seed formation step is Pd, and Sn ions are used to facilitate the formation of this Pd seed layer. This is problematic because the Sn ions interfere with the reduction of Cu ions during electroless plating; thus, the Sn ions must be removed by a hydrochloric acid cleaning process. This method is also expensive due to the use of Pd. In this study, Cu electroless plating was performed by forming a seed layer using a silver nanosol instead of Pd and Sn. The effects of the Ag nanosol concentration in the pretreatment solution and the pretreatment time on the thickness and surface morphology of the Cu layer were investigated. The degrees of adhesion to the substrate were similar for the electroless-plated Cu layers formed by conventional Pd activation and those formed by the Ag nanosol.

Conductive adhesive with transient liquid-phase sintering technology for high-power device applications

  • Eom, Yong-Sung;Jang, Keon-Soo;Son, Ji-Hye;Bae, Hyun-Cheol;Choi, Kwang-Seong
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.820-828
    • /
    • 2019
  • A highly reliable conductive adhesive obtained by transient liquid-phase sintering (TLPS) technologies is studied for use in high-power device packaging. TLPS involves the low-temperature reaction of a low-melting metal or alloy with a high-melting metal or alloy to form a reacted metal matrix. For a TLPS material (consisting of Ag-coated Cu, a Sn96.5-Ag3.0-Cu0.5 solder, and a volatile fluxing resin) used herein, the melting temperature of the metal matrix exceeds the bonding temperature. After bonding of the TLPS material, a unique melting peak of TLPS is observed at 356 ℃, consistent with the transient behavior of Ag3Sn + Cu6Sn5 → liquid + Cu3Sn reported by the National Institute of Standards and Technology. The TLPS material shows superior thermal conductivity as compared with other commercially available Ag pastes under the same specimen preparation conditions. In conclusion, the TLPS material can be a promising candidate for a highly reliable conductive adhesive in power device packaging because remelting of the SAC305 solder, which is widely used in conventional power modules, is not observed.

Low Temperature CO Oxidation over CuO Catalyst Supported on Al-Ce Oxide Support (Al-Ce 산화물에 담지된 CuO 촉매상에서 저온 CO산화반응)

  • Park, Jung-Hyun;Yun, Hyun Ki;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.156-162
    • /
    • 2017
  • CuO(x)/0.3Al-0.7Ce catalysts with different CuO loadings (x = 2~20 wt%) were prepared by impregnation method and investigated the effects of CuO loadings on the low temperature CO oxidation. Of the used catalysts, the CuO(10)/0.3Al-0.7Ce catalyst showed the highest catalytic performance in the absence or presence of water vapor. In the presence of water vapor, the catalytic performance was drastically decreased, with a temperature of 50% CO conversion ($T_{50%}$) shifted to higher temperature by $50^{\circ}C$ compared to the those in dry conditions because of the competitive adsorption of water vapor on the active sites. The copper metal surface area calculated from $N_2O$-titration analysis and the oxygen capacity from CO-pulse experiments were increased with the CuO loadings and showed a maximum at 10 wt%CuO/0.3Al-0.7Ce catalyst. These trends are in good agreement with the tendency of $T_{50%}$ of the catalysts. From these characteristic aspects, it could be deduced that the catalytic performance was closely related to the oxygen capacity and the copper metallic surface area.

Properties of ITO/Cu/ITO Multilayer Films for Application as Low Resistance Transparent Electrodes

  • Kim, Dae-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.5
    • /
    • pp.165-168
    • /
    • 2009
  • Transparent and conducting ITO/Cu/ITO multilayered films were deposited by magnetron sputtering on unheated polycarbonate (PC) substrates. The thickness of the Cu intermediate film was varied from 5 to 20 nm. Changes in the microstructure and optoelectrical properties of ITO/Cu/ITO films were investigated with respect to the thickness of the Cu intermediated layer. The optoelectrical properties of the films were significantly influenced by the thickness of the Cu interlayer. The sandwich structure of ITO 50 nm/Cu 5 nm/ITO 45 nm films had a sheet resistance of $36{\Omega}$/Sq. and an optical transmittance of 67% (contain substrate) at a wavelength of 550 nm, while the ITO 50 nm/Cu 20 nm/ITO 30 nm films had a sheet resistance of $70{\Omega}$/Sq. and an optical transmittance of 36%. The electrical and optical properties of ITO/Cu/ITO films were determined mainly by the Cu film properties. From the figure of merit, it is concluded that the ITO/Cu/ITO films with a 5 nm Cu interlayer showed the better performance in transparent conducting electrode applications than the conventional ITO films.

A study of properties which the diffusion barrier Ta and IMD(Inter-Metal Dielectric) metrial SiOCH for $Cu^+$ ion diffusion (구리이온의 확산에 대한 IMD(Inter-Metal Dielectric)용 Low-k 물질인 SiOCH와 diffusion barrier Ta의 특성에 관한 연구)

  • Kim, J.W.;Song, J.H.;Choi, Y.H.;Kim, J.G.;Lee, H.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1697-1699
    • /
    • 2004
  • In this investigation, we have studied the diffusion of the $Cu^+$ ion in the Cu/Ta/SiOCH/Si and Cu/Ta/$SiO_2$/Si MIS-C structure. The Cu ions diffusion into the Ta barrier and SiOCH was examined by shift in flatband voltage of capacitance-voltage measurement and leakage current of current-voltage measurement. These evalution indicated that $Cu^+$ ion diffusion rate in Ta/SiOCH is considerably lower then the Ta/$SiO_2$ structure. And diffusion barrier Ta(50[nm]) is useful barrier against $Cu^+$ ion diffusion up to 450$^{\circ}C$.

  • PDF

One-step Physical Method for Synthesis of Cu Nanofluid in Ethylene Glycol

  • Bac, L.H.;Yun, K.S.;Kim, J.S.;Kim, J.C.;Rhee, C.K.
    • Journal of Powder Materials
    • /
    • v.17 no.6
    • /
    • pp.464-469
    • /
    • 2010
  • The Cu nanofluid in ethylene glycol was prepared by electrical explosion of wire, a novel one-step method. The X-ray diffraction, field emission scanning electron microscope and transmission electron microscope were used to study the properties of Cu nanoparticles. The results showed that the nanoparticles were consisted of pure face-centered cubic structure and near spherical shape with average grain size of 65 nm. Ultraviolet-visible spectroscopy (UV-Vis) confirmed Cu nanoparticles with a single absorbance peak of Cu surface plasmon resonance band at 600 nm. The nanofluid was found to be stable due to high positive zeta potential value, +51 mV. The backscattering level of nanofluid in static stationary was decreased about 2% for 5 days. The thermal conductivity measurement showed that Cu-ethylene glycol nanofluid with low concentration of nanoparticles had higher thermal conductivity than based fluid. The enhancement of thermal conductivity of nanofluid at a volume fraction of 0.1% was approximately 5.2%.