• Title/Summary/Keyword: Cu(II) complex

Search Result 225, Processing Time 0.028 seconds

A Study on Complexation of Cu(Ⅱ) Ion with Hydrazide Schiff Base Lignads (Cu(Ⅱ) 이온과 Hydrazide Schiff Base 리간드와의 착물형성에 관한 연구)

  • Cho, Hwee Kyung;Cha, Bun Hee;Hur, Young Ae;Choi, Kyu Seong
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.4
    • /
    • pp.281-287
    • /
    • 1995
  • Copper(Ⅱ) complexes with N,N'-oxalylbis(salicylaldehydehydrazone), N,N'-malonylbis(salicylaldehydehydrazone) and N,N'-succinylbis(salicylaldehydehydrazone) have been prepared in 95% DMF. Their protonation and stability constants were investigated by potentiometric titration. We observed that MBSH ligand showed the largest protonation constant. The values of the protonation constants among three different ligands were increased as following order SBSH < OBSH < MBSH. However, the increasing order of stability constants was somewhat different such as Cu(Ⅱ)-SBSH < Cu(Ⅱ)-MBSH < Cu(Ⅱ)-OBSH. In addition, thermodynamic parameters, ΔH and ΔS of Cu(Ⅱ) complexes have been studied. As a result, we found the SBSH ligand produced the best stable copper (Ⅱ) complex.

  • PDF

Experimental and Theoretical Study on Corrosion Inhibition of Mild Steel in Oilfield Formation Water Using Some Schiff Base Metal Complexes

  • Mahross, M.H.;Efil, Kursat;El-Nasr, T.A. Seif;Abbas, Osama A.
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.222-235
    • /
    • 2017
  • First, in this study, the inhibition efficiencies of metal complexes with Cu(II), Ni(II) and Zn(II) of STSC ligand for corrosion control of mild steel in oilfield formation water were investigated. The IEs for a mixture of 500 ppm STSC and 5 ppm metal ion ($Cu^{+2}$, $Ni^{+2}$, $Zn^{+2}$) were found to be 88.77, 87.96 and 85.13 %, respectively. The results were obtained from the electrochemical techniques such as open circuit potential, linear and tafel polarization methods. The polarization studies have showed that all used Schiff base metal complexes are anodic inhibitors. The protective film has been analyzed by FTIR technique. Also, to detect the presence of the iron-inhibitor complex, UV-Visible spectral analysis technique was used. The inhibitive effect was attributed to the formation of insoluble complex adsorbed on the mild steel surface and the adsorption process follows Langmuir adsorption isotherm. The surface morphology has been analyzed by SEM. Secondly, the computational studies of the ligand and its metal complexes were performed using DFT (B3LYP) method with the $6-311G^{{\ast}{\ast}}$ basis set. Finally, it is found that the experimental results were closely related to theoretical ones.

The Simultaneous Extraction and Determination of Trace Copper and Zinc in Solvent Extraction (용매추출법에 의한 토양중의 미량 구리와 아연원소의 동시추출 및 정량에 관한 연구)

  • 정창웅;지석주;박종안
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.3
    • /
    • pp.87-95
    • /
    • 1995
  • A rapid and selective co-extraction systems of copper and zinc-thiocyanate complex into various types of alkylamine for the simultaneous determination of two metal ions by atomic absorption spectrometry and ion chromatograph have been proposed. The quantitative extractions of Cu(II) and Zn(II) at 0.1 M-thiocyanate and 0.1 M-HCI were achieved with Aliquat 336-$CHCl_3$. The detection limits of Cu and Zn were 2 ppb and 0.9 ppb respectively.

  • PDF

Rates and Mechanism of the Oxidation of l-Ascorbic Acid with Cu(Ⅱ)-Polyamine Complexes (구리(Ⅱ)-아민류 착물에 의한 l-ascorbic acid의 산화반응속도와 메카니즘)

  • Kim, Sun-Deuk;Park, Jung-Eun;Jang, Ki-Ho;Shin, Han-Chul;Kim, Chang-Su
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.1
    • /
    • pp.29-34
    • /
    • 1995
  • The rates for the oxidation reaction of l-ascorbic acid by Cu(Ⅱ)-polyamine complexes were measured by Onish's method at the pH 4.6. The oxidation process of l-ascorbic acid is proposed to occur by the inner-sphere mechanism that involves the formation of a Cu(Ⅱ)-ascorbic acid complex and electron transfer at the rate-determining step.

  • PDF

A Study on the Spectrophotometric Analysis of Pyruvic Acid (Pyruvic Acid의 분광학적 정량법에 관한 연구)

  • 최윤수;조경열;석경순
    • YAKHAK HOEJI
    • /
    • v.29 no.3
    • /
    • pp.117-123
    • /
    • 1985
  • A clorimetric determination method of pyruvic acid using hydroxylamine was studied. Hydroxylamine was reacted with pyruvic acid to form complex compound in the presence of Cu(II) ion. Optimal conditions for the quantitative analysis were investigated and the structure of complex was examined spectrometrically. The molar ratio (2:1) and the stability constant ($1.88{\times}10^{4}$) of the complex were measured. It was the characteristic feature of this method that the commonly encountered interfering substances such as fructose, glucose and lactic acid do not infuence the measurement of pyruvic acid.

  • PDF

Synthesis and Structure of Bis(ethylenediamine) cuprate(II)$\cdot$Dichromate (Bis(ethylenediamine) cuprate(II)$\cdot$Dichromate의 합성 및 결정구조 연구)

  • Kim, Seung-Bin;Namgung, Hae
    • Korean Journal of Crystallography
    • /
    • v.16 no.1
    • /
    • pp.38-42
    • /
    • 2005
  • The crystal structure of Bis(ethylenediamine) cuprate(II)$\cdot$dichromate, $Cu(C_2H_8N_2)_2{\cdot}Cr_2O_7$, has been determined by X-ray crystallography. Crystal data: a=5.682(2), b=8.567(3), c=14.839(3) ${\AA},\;{\alpha}=97.50(2),\;{\beta}=101.06(1),\;{\gamma}=109.38(2)^{\circ}$ Triclinic, P-1 (SG No=2), Z=2, V=653.9(2) ${\AA}^3,\;D_c=2.030gcm^{-3},\;{\mu}=3.273mm^{-1}$. The structure was solved by Patterson method and refined by full matrix least-square methods uslng unit weights. The final R and S values were $R_1=0.0256,\;R_w=0.0708,\;R_{all}=0.0316,\;S=1.151$ for the observed 2291 reflections. The two cupper complex ion has the usual distorted octahedral structure with mean four Cu-N distances of 2.010(3) $\AA$ and the longer mean Cu-O distance of 2.525(2) $\AA$. The Cu-complex and dichromate ions are linked to form infinite chain arranged alternatively along the [111]-direction. The neighboring chains in the (0-11) plane are connected with N1-O5 and N3-O1 hydrogen bonds.

Electrochemical Properties of Binuclear Tetradentate Schiff Base Cobalt(II), Nickel(II) and Copper(II) Complexes in Nonaqueous Solvents. (V) (비수용매에서 이핵성 네자리 Schiff Base Cobalt(II), Nickel(II) 및 Copper(II) 착물들의 전기화학적 성질 (제 5 보))

  • Chjo Ki-Hyung;Choi Yong-Kook;Lee Song-Ju;Kim Chan-Young;Rim Chae-Pyeong
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.5
    • /
    • pp.709-719
    • /
    • 1992
  • We synthesized the binuclear tetradentate Schiff base cobalt(II), nickel(II) and copper(II) complexes such as [Co(II)_2(TSBP)(L)_4], [Ni(II)_2(TSBP)(II)_4] and [Cu(II)_2(TSBP)] (TSBP: 3,3',4,4'-tetra(salicylideneimino)-1,1'-biphenyl, L: Py, DMSO and DMF). We identified the binucleated structure of these complexes by elemental analysis, IR-spectrum, UV-visible spectrum, T.G.A. and D.S.C. According to the results for cyclic voltammogram and differential pulse polarogram of 1 mM complexes in nonaqueous solvents included 0.1M TEAP-L (L; Py, DMSO and DMF) as supporting electrolyte, it was found that diffusionally controlled redox processes of four steps through with one electron for binucleated Schiff base Cobalt(II) complex was Co(III)_2 {^\longrightarrow \\_\longleftarrow^e^-}Co(III)Co(II)_2{^\longrightarrow \\_\longleftarrow^e^-}Co(II){^\longrightarrow \\_\longleftarrow^e^-}Co(I){^\longrightarrow \\_\longleftarrow^e^-}Co(I)_2 and two steps with one electron for Nickel(II) and Copper(II) complexes were M(II)_2 {^\longrightarrow \\_\longleftarrow^e^-}M(I)M(I){^\longrightarrow \\_\longleftarrow^e^-}M(I)_2 (M; Ni and Cu) in nonaqueous solvents.

  • PDF

Synthesis and Characterization of New Mono-N-functionalized Tetraaza Macrocyclic Nickel(II) and Copper(II) Complexes

  • Kim, Hyun-Ja;Kang, Shin-Geol
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2565-2570
    • /
    • 2011
  • The reaction of bromoacetonitrile with 3,14-dimethyl-2,6,13,17-tetraazatetracyclo[$16.4.1^{2.6}.0^{1.18}.0^{7.12}$]tricosane ($L^{10}$) containing a N-$CH_2$-N linkage produces 17-cyanomethyl-3,14-dimethyl-2,6,13,17-tetraazatetracyclo-[$16.4.1^{2.6}.0^{1.18}.0^{7.12}$]tricosane ($L^{11}$). The mono-N-functionalized macrocyclic complexes $[ML^2]^{2+}$ (M = Ni(II) or Cu(II); $L^2$ = 2-cyanomethyl-5,16-dimethyl-2,6,13,17-tetraazatricyclo[$16.4.0.0^{7.12}$]docosane) can be prepared by the reaction of $L^{11}$ with nickel(II) or copper(II) ion in acetonitrile. The N-$CH_2CN$ group attached to $[ML^2]^{2+}$ readily reacts with water or methanol to yield the corresponding complexes of $HL^3$ bearing one N-$CH_2CONH_2$ pendant arm or $L^4$ bearing one $N-CH_2C(=NH)OCH_3$ group. The $N-CH_2CONH_2$ or $N-CH_2C(=NH)OCH_3$ group of each complex is coordinated to the central metal ion. Both $[NiL^4(H_2O)]^{2+}$ and $[CuL^4]^{2+}$ are quite stable in acidic aqueous solutions, but undergo hydrolysis to yield $[Ni(HL^3)(H_2O)]^{2+}$ or $[Cu(HL^3)]^{2+}$ in basic aqueous solutions. In contrast to $[Cu(HL^3)]^{2+}$, $[Ni(HL^3) (H_2O)]^{2+}$ is readily deprotonated to form $[NiL^3 (H_2O)]^+$ ($L^3$ = a deprotonated form of $HL^3$) in basic aqueous solutions.

Gadolinium Complexes of Bifunctional Diethylenetriaminepentaacetic Acid (DTPA)-bis(amides) as Copper Responsive Smart Magnetic Resonance Imaging Contrast Agents (MRI CAs)

  • Nam, Ki Soo;Park, Ji-Ae;Jung, Ki-Hye;Chang, Yongmin;Kim, Tae-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2900-2904
    • /
    • 2013
  • We present the synthesis and characterization of DTPA-bis(histidylamide) (1a), DTPA-bis(aspartamide) (1b), and their gadolinium complexes of the type $[Gd(L)(H_2O)]$ (2a:L = 1a; 2b:L = 1b). Thermodynamic stabilities and $R_1$ relaxivities of 2a-b compare well with Omniscan$^{(R)}$, a well-known commercial, extracellular (ECF) MRI CA which adopts the DTPA-bis(amide) framework for the chelate: $R_1$ = 5.5 and 5.1 $mM^{-1}$ for 2a and 2b, respectively. Addition of the Cu(II) ion to a solution containing 2b triggers relaxivity enhancement to raise $R_1$ as high as 15.3 $mM^{-1}$, which corresponds to a 300% enhancement. Such an increase levels off at the concentration beyond two equiv. of Cu(II), suggesting the formation of a trimetallic ($Gd/Cu_2$) complex in situ. Such a relaxivity increase is almost negligible with Zn(II) and other endogenous ions such as Na(I), K(I), Mg(II), and Ca(II). In vivo MR images and the signal-to-noise ratio (SNR) obtained with an aqueous mixture of 2b and Cu(II) ion in an 1:2 ratio demonstrate the potentiality of 2 as a copper responsive MRI CA.

Synthesis and Properties of Polydentate Schiff Base Ligands having $N_nO_2$ (n=3~5) Donor Atoms and their Transition Metal Complexes (여러자리 질소-산소계 시프염기 리간드와 전이금속착물의 합성 및 특성)

  • Kim, Sun-Deuk;Shin, Yun-Yeol;Park, Sung-Woo
    • Analytical Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.366-373
    • /
    • 1998
  • Polydentate Schiff base ligands, BSDT(1,9-bis(2-hydroxyphenyl)-2,5,8-triaza-1,8-nonadiene) having $N_3O_2$ atoms, BSTT(1,12-bis(2-hydroxyphenyl)-2,5,8,11-tetraaza-1,11-dodecadiene) having $N_4O_2$ atoms, BSTP(1,15-bis(2-hydroxyphenyl)-2,5,8,11,14-pentaaza-1,14-pentadodecadiene) having $N_5O_2$ atoms were synthesized. Protonation constants of these polydentate ligands were measured by potentiometry. Stability constants of the complexes between these ligands and the metal ions such as Cu(II), Ni(II) and Zn(II) were measured in DMSO by a polarographic method. It was observed that all metal(II) ions employed in this study formed 1:1 complexes with Schiff base ligands. Stability constants for the complex formation were in the order of Cu(II)>Ni(II)>Zn(II), and for the ligands were in the order of BSTP>BSTT>BSDT. There are due to the increase in the number of donor atoms. Both enthalpy and entropy changes were obtained in negative values. Exothermicity for the complex formation indicated tight binding between the ligands and metal ions. The negative entropy change would be related to the fact that solvent molecules are strongly interacting with the metal complexes.

  • PDF