DOI QR코드

DOI QR Code

Experimental and Theoretical Study on Corrosion Inhibition of Mild Steel in Oilfield Formation Water Using Some Schiff Base Metal Complexes

  • Mahross, M.H. (Chemistry Department, Faculty of Science, Al-Azhar University) ;
  • Efil, Kursat (Chemistry Department, Faculty of Arts and Sciences, Ondokuz Mayis University) ;
  • El-Nasr, T.A. Seif (Chemistry Department, Faculty of Science, Al-Azhar University) ;
  • Abbas, Osama A. (Chemistry Department, Faculty of Science, Al-Azhar University)
  • Received : 2017.06.08
  • Accepted : 2017.07.19
  • Published : 2017.09.30

Abstract

First, in this study, the inhibition efficiencies of metal complexes with Cu(II), Ni(II) and Zn(II) of STSC ligand for corrosion control of mild steel in oilfield formation water were investigated. The IEs for a mixture of 500 ppm STSC and 5 ppm metal ion ($Cu^{+2}$, $Ni^{+2}$, $Zn^{+2}$) were found to be 88.77, 87.96 and 85.13 %, respectively. The results were obtained from the electrochemical techniques such as open circuit potential, linear and tafel polarization methods. The polarization studies have showed that all used Schiff base metal complexes are anodic inhibitors. The protective film has been analyzed by FTIR technique. Also, to detect the presence of the iron-inhibitor complex, UV-Visible spectral analysis technique was used. The inhibitive effect was attributed to the formation of insoluble complex adsorbed on the mild steel surface and the adsorption process follows Langmuir adsorption isotherm. The surface morphology has been analyzed by SEM. Secondly, the computational studies of the ligand and its metal complexes were performed using DFT (B3LYP) method with the $6-311G^{{\ast}{\ast}}$ basis set. Finally, it is found that the experimental results were closely related to theoretical ones.

Keywords

References

  1. A.S. Fouda, A.M. Eldesoky, M.A. Elmorsi, T.A. Fayed, M.F. Atia, Int. J. Electrochem. Sci., 2013, 8, 10219-10238.
  2. A.S. Fouda, S.M. Abd El-Wahab, M.S. Attia, A.O. Youssef, H.O. Elmoher, Der Pharma Chem., 2015, 7, 74-87.
  3. E. Sadeghi Meresht, T. Shahrabi Farahani, J. Neshati, Corros. Sci., 2012, 54, 36-44. https://doi.org/10.1016/j.corsci.2011.08.052
  4. J. Tang, Y. Shao, T. Zhang, G. Meng, F. Wang, Corros. Sci., 2011, 53, 1715-1723. https://doi.org/10.1016/j.corsci.2011.01.041
  5. B.M. Johnson, L.E. Kanagy, J.H. Rodgers, J.W. Castle, Water. Air. Soil Pollut., 2008, 191(1-4), 33-54. https://doi.org/10.1007/s11270-007-9605-8
  6. A. Popova, M. Christov, A. Vasilev, Corros. Sci., 2011, 53(5), 1770-1777. https://doi.org/10.1016/j.corsci.2011.01.055
  7. X. Li, S. Deng, H. Fu, Corros. Sci., 2011, 53(1), 302-309. https://doi.org/10.1016/j.corsci.2010.09.036
  8. M.A. Migahed, R.O. Aly, A.M. Al-Sabagh, Corros. Sci., 2004, 46(10), 2503-2516. https://doi.org/10.1016/j.corsci.2004.01.013
  9. M.A. Migahed, M. Abd-El-Raouf, A.M. Al-Sabagh, H.M. Abd-El-Bary, Electrochim. Acta., 2005, 50(24), 4683-4689. https://doi.org/10.1016/j.electacta.2005.02.021
  10. M.A. Migahed, A.A. Farag, S.M. Elsaed, R. Kamal, H.A. El-Bary, Chem. Eng. Commun., 2012, 199(11), 1335-1356. https://doi.org/10.1080/00986445.2012.662922
  11. S. Rajendran, K. Anuradha, K. Kavipriya, A. Krishnaveni, J. Jeyasundari, V. Sribharathy, Port. Electrochim. Acta., 2013, 31(3), 141-155. https://doi.org/10.4152/pea.201303141
  12. K. Kavipriya, J. Sathiyabama, S. Rajendran, J. Sci., 2015, 5(6), 390-396.
  13. S. Abuthahir, K.J. Vigrant, R. Vignesh, C. Vignseh, J.A. Nasser, Vijaya and Rajendran, J. Chem. Pharm. Res., 2015, 7(10S), 193-200.
  14. A. Bansiwal, P. Anthony, S.P. Mathur, Br. Corros. J., 2000, 35(4), 301-303. https://doi.org/10.1179/000705900101501380
  15. E.E. Ebenso, P.C. Okafor, O.E. Offiong, B.I. Ita, U.J. Ibok, U.J. Ekpe, Bull. Electrochem., 2001, 17(10), 459-464.
  16. T. Sethi, A. Chaturvedi, R. Upadhyay, S.P. Mathur, J. Chil. Chem. Soc., 2007, 52(3), 1206-1213. https://doi.org/10.4067/S0717-97072007000300003
  17. K. Srivastava, A. Kumar, R. Singh, J. Chem. Pharm. Res., 2010, 2(6), 68-77.
  18. M.M. Deshpande, S.B. Junne, D.V. Saraf, P.A. Kulkarni, J. Chem. Pharm. Res., 2010, 2(3), 453-458
  19. S.B. Ade, M.N. Deshpande, D.G. Kolhatkar, J. Chem. Pharm. Res., 2012, 4(2), 1033-1035.
  20. S.K. Saha, P. Ghosh, A.R. Chowdhury, P. Samanta, N.C. Murmu, A.K. Lohar, P. Banerjee, Can. Chem. Trans., 2014, 2, 381-402.
  21. N. Khalil, Electrochim. Acta., 2003, 48(18), 2635-2640. https://doi.org/10.1016/S0013-4686(03)00307-4
  22. I. Lukovits, A. Shaban, E. Kalman, Electrochim. Acta., 2005, 50(20), 4128-4133. https://doi.org/10.1016/j.electacta.2005.01.029
  23. M. Abdallah, I. Zaafarany, J.H. Al-Fahemi, Y. Abdallah, A.S. Fouda, Int. J. Electrochem. Sci., 2012, 7(8), 6622-6637.
  24. A.S. Fouda, M. Abdallah, A.M. Atya, H.D. Sabaa, Corrosion., 2012, 68(7), 610-619. https://doi.org/10.5006/0454
  25. K.F. Khaled, M.M. Al-Qahtani, Mater. Chem. Phys., 2009, 113(1), 150-158. https://doi.org/10.1016/j.matchemphys.2008.07.060
  26. S.H.A. El Fetoh, A.E. Eid, A.T.A. El-Kareem, M.A. Wassel, J. Mater. Sci. Technol., 1998, 14(5), 434-440.
  27. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson et al, Gaussian 03, Revision E.01, (2004).
  28. A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard III, W.M. Skiff, J. Am. Chem. Soc., 1992, 114(25), 10024-10035. https://doi.org/10.1021/ja00051a040
  29. E.I. Ioannidis, T.Z.H. Gani, H.J. Kulik, J. Comput. Chem., 2016, 37(22), 2106-2117. https://doi.org/10.1002/jcc.24437
  30. E.A. Noor, A.H. Al-Moubaraki, Mater. Chem. Phys., 2008, 110(1), 145-154. https://doi.org/10.1016/j.matchemphys.2008.01.028
  31. X. Li, S. Deng, H. Fu, Corros. Sci., 2009, 51(6), 1344-1355. https://doi.org/10.1016/j.corsci.2009.03.023
  32. R. Solmaz, G. Kardas, M. Culha, B. Yazici, M. Erbil, Electrochim. Acta., 2008, 53(20), 5941-5952. https://doi.org/10.1016/j.electacta.2008.03.055
  33. M.A. Migahed, I.F. Nassar, Electrochim. Acta., 2008, 53(6), 2877-2882. https://doi.org/10.1016/j.electacta.2007.10.070
  34. S. Rajendrana, R.M. Joany, B. V Apparao, N. Palaniswamy, Indian J. Chem. Technol., 2002, 9(3), 197-200.
  35. S.S.S. Abuthahir, A.J.A. Nasser, S. Rajendran, Eur. Chem. Bull., 2014, 3(1), 40-45.
  36. H. Amar, T. Braisaz, D. Villemin, B. Moreau, Mater. Chem. Phys., 2008, 110(1), 1-6. https://doi.org/10.1016/j.matchemphys.2007.10.001
  37. R. Kalaivani, B. Narayanaswamy, J.A. Selvi, A.J. Amalraj, J. Jeyasundari, S. Rajendran, Port. Electrochim. Acta., 2009, 27(2), 177-187. https://doi.org/10.4152/pea.200902177
  38. J. Sathiyabama, S. Rajendran, J.A. Selvi, J. Jeyasundari, Open Corros. J., 2009, 2, 77-82. https://doi.org/10.2174/1876503300902010077
  39. A.S.S. Raja, S. Rajendran, J. Electrochem. Sci. Eng., 2012, 2(2), 91-104.
  40. D. Gopi, N. Bhuvaneswaran, S. Rajeswari, Bull. Electrochem., 2002, 18(1), 29-34.
  41. D. Gopi, S. Rajeswari, J. Solid State Electrochem., 2002, 6(3), 194-202. https://doi.org/10.1007/s100080100214
  42. R.G. Pearson, J. Org. Chem., 1989, 54(6), 1423-1430. https://doi.org/10.1021/jo00267a034
  43. J. Padmanabhan, R. Parthasarathi, V. Subramanian, P.K. Chattaraj, J. Phys. Chem. A., 2007, 111(7), 1358-1361. https://doi.org/10.1021/jp0649549
  44. T.A. Yousef, G.M. Abu El-Reash, R.M. El Morshedy, Polyhedron., 2012, 45(1), 71-85. https://doi.org/10.1016/j.poly.2012.07.041
  45. T.A. Yousef, G.M. Abu El-Reash, R.M. El Morshedy, J. Mol. Struct., 2013, 1045, 145-159. https://doi.org/10.1016/j.molstruc.2013.03.060
  46. M. Govindarajan, S. Periandy, K. Carthigayen, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2012, 97, 411-422. https://doi.org/10.1016/j.saa.2012.06.028