• Title/Summary/Keyword: Crystalline epoxy

Search Result 29, Processing Time 0.027 seconds

Thermal Properties of Diglycidyl Ether of Terephthalylidene-bis-(4-amino-3-methylphenol) (Diglycidyl ether of terephthalylidene-bis-(4-amino-3-methylphenol)의 열적 성질에 대한 연구)

  • Hyun, Ha-Neul;Choi, Ji-Woo;Cho, Seung-Hyun
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.53-60
    • /
    • 2022
  • This study uses Diglycidyl ether of terephthalylidene-bis-(4-amino-3-methylphenol) (DGETAM), an amine hardener 4,4'-diaminodiphenylethane (DDE) and cationic catalyst N-benzylpyrazinium hexafluoroantimonate (BPH) to make epoxy film. For analysis, 1H_NMR and FT-IR were used to verify proper synthesis, and the liquid crystallinity of DGETAM was checked using Differntial Scanning Calorimetry and Polarized Optical Microscopy. Thermal conductivity of the sample was measured using Laser Flash Apparatus. Thermal stability as well as thermal conductivity is important when used as a packaging material. Activated energy is the energy needed to generate a response, which can be used to estimate the energy required to maintain physical properties. It was obtained using the Arrhenius equation based on the data measured by isothermal decomposition using Thermogravimetric Analysis. Measurement of the thermal conductivity of epoxy films showed higher thermal conductivity when DDE was used, and it was found that thermal conductivity had an effect on thermal stability, given that it represented an activation energy similar to a film with BPH upon 5% decomposition.

Conservation of Seated Iron Śākyamuni Buddha Statue from Goryeo Dynasty (고려(高麗) 철제석가여래좌상(鐵製釋迦如來坐像)의 보존)

  • Huh, Ilkwon;Yoo, Jayoung
    • Conservation Science in Museum
    • /
    • v.11
    • /
    • pp.9-16
    • /
    • 2010
  • The National Chuncheon Museum has carried out a conservation process in order to prevent corrosion of the seated iron Śākyamuni Buddha statue from Goreyo Dysnasty for its exhibition. Before the conservation process, the surface of the artifact showed exfoliation and the artifact was damaged from rear to legs so exhibition was impossible. Therefore a process to get rid of pollution and to reinforce and protect the artifact was carried out. Before the reinforcing process, a basic test was carried out using micro crystalline wax type with reference to foreign and domestic experiment results. As a result, as wax(in xylene) 5wt% of Dongnam petrochemical Ltd. showed no efflorescence and little change in surface color and was convenient to use, it was chosen as a reinforcing agent and used to suppress corrosion. For the restoration of damaged parts, an internal support was made and used with an epoxy resin, allowing removable restoration, thus increasing effectiveness for exhibition.

A Study on Physical Properties of Epoxy Resin Filled with Surface-treated Silica: I. Surface-treating of Silica and Properties of Mixtures (표면처리된 실리카를 충전한 에폭시 수지계의 물성에 관한 연구 I. 실리카의 표면처리 및 혼합 물성)

  • Hong, Suk-Pyo;Choi, Sang-Goo
    • Applied Chemistry for Engineering
    • /
    • v.1 no.1
    • /
    • pp.63-72
    • /
    • 1990
  • Surface of crystalline silica was sequentially reacted with silane(A 187), liquid rubber(CTBNx8) and vinyl monomer(AA, MMA, 2-HEA, GMA) in existance of amines(TEA, CTMAB, BETAC) or peroxide(BPO). By mixing it with epoxy resin at a ratio 0~36%(volume %) of total component, liquid properties of mixtures was investigated experimentally. i) Coating ratio depended on quantity and sorts of catalyst. ii) Total coating of 2.5~5.8% was attained by using 0.1~2.0% of catalyst. iii) Treated surfaces represented each different features in according to sorts of treatment. iv) Silane/rubber or silane/rubber/vinyl represented lower viscosity and settling than non-treated or silane-treated.

  • PDF

Advanced 'green' composites

  • Netravali, Anil N.;Huang, Xiaosong;Mizuta, Kazuhiro
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.269-282
    • /
    • 2007
  • Fully biodegradable high strength composites or 'advanced green composites' were fabricated using yearly renewable soy protein based resins and high strength liquid crystalline cellulose fibers. For comparison, E-glass and aramid ($Kevlar^{(R)}$) fiber reinforced composites were also prepared using the same modified soy protein resins. The modification of soy protein included forming an interpenetrating network-like (IPN-like) resin with mechanical properties comparable to commonly used epoxy resins. The IPN-like soy protein based resin was further reinforced using nano-clay and microfibrillated cellulose. Fiber/resin interfacial shear strength was characterized using microbond method. Tensile and flexural properties of the composites were characterized as per ASTM standards. A comparison of the tensile and flexural properties of the high strength composites made using the three fibers is presented. The results suggest that these green composites have excellent mechanical properties and can be considered for use in primary structural applications. Although significant additional research is needed in this area, it is clear that advanced green composites will some day replace today's advanced composites made using petroleum based fibers and resins. At the end of their life, the fully sustainable 'advanced green composites' can be easily disposed of or composted without harming the environment, in fact, helping it.

Synthesis of Crosslinked Poly(POEM-co-AMPSLi-co-GMA) Electrolytes and Physicochemical Properties (가교결합형 poly(POEM-co-AMPSLi-co-GMA) 전해질의 합성과 물리화학적 특성)

  • Choi, Da-In;Ryu, Sang-Woog
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.65-70
    • /
    • 2014
  • In this study, crosslinked poly(POEM-co-AMPSLi-co-GMA)s were prepared by epoxy coupling of GMA after radical copolymerization of AMPS, POEM and GMA followed by acid-base titration reaction between sulfonic acid of AMPS and $Li_2CO_3$. It was observed that the crystalline melting temperature of POEM was effected by mol% of components and shifted to lower value by lithiation of AMPS group. The ionic conductivity of crosslinked polymer electrolyte was decreased by addition of GMA but maintained over $1.0{\times}10^{-6}S\;cm^{-1}$ until 16 mol%. Particularly, the self-doped polymer electrolyte with 2 mol% of GMA showed its ionic conductivity as high as $4.08{\times}10^{-6}S\;cm^{-1}$ at room temperature and electrochemical stability up to 6 V. In addition, 0.11 MPa of modulus and 270% of elongation were obtained from the free standing film of crosslinked polymer electrolyte.

Mechanochemical Treatment of Quartz for Preparation of EMC Materials

  • Shin, Hee-Young;Chae, Young-Bae;Park, Jai-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.315-324
    • /
    • 2001
  • Mechanochemical effects that occurred in the fine grinding process of quartz particles using planetary ball mill was investigated. Quartz particles have been frequently utilized for optical materials, semiconductor molding materials. We determined that grinding for a long time can be create amorphous structures from the crystalline quartz by Mechanochemical effects. But, to be produced nano-composite particles that the critical grinding time reached for composite materials in a short time. Henceforth, a qualitative estimation must be conducted on the filler for EMC(Epoxy molding compound) materials. It can be produced mechanochemically treated composite materials and also an integrated grinding efficiency considering of the nano-composite amorphous structured particles. The mechanochemical characteristics were evaluated based on particle morphology, size distribution, specific surface area, density and the amount of amorphous phase materials into the particle surface. The grinding operation in the planetary ball mill can be classified into three stages. During the first stage, initial particle size was reduced for the increase of specific surface area. In the second stage, the specific surface areas increased in spite of the increase in particle size. The final stage as a critical grinding stage, the ground quartz was considered mechanochemically treated particles as a nano- composite amorphous structured particles. The development of amorphous phase on the particle surface was evaluated by X-ray diffractometry, thermal gravity analysis and IR spectrometer. The amount of amorphous phase of particles ground for 2048 minutes was 85.3% and 88.2% by X-ray analysis and thermal gravity analysis, respectively.

  • PDF

Analysis on the influence of sports equipment of fiber reinforced composite material on social sports development

  • Jian Li;Ningjiang Bin;Fuqiang Guo;Xiang Gao;Renguo Chen;Hongbin Yao;Chengkun Zhou
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.49-57
    • /
    • 2023
  • As composite materials are used in many applications, the modern world looks forward to significant progress. An overview of the application of composite fiber materials in sports equipment is provided in this article, focusing primarily on the advantages of these materials when applied to sports equipment, as well as an Analysis of the influence of sports equipment of fiber-reinforced composite material on social sports development. The present study investigated surface morphology and physical and mechanical properties of S-glass fiber epoxy composites containing Al2O3 nanofillers (for example, 1 wt%, 2 wt%, 3 wt%, 4 wt%). A mechanical stirrer and ultrasonication combined the Al2O3 nanofiller with the matrix in varying amounts. A compression molding method was used to produce sheet composites. A first physical observation is well done, which confirms that nanoparticles are deposited on the fiber, and adhesive bonds are formed. Al2O3 nanofiller crystalline structure was investigated by X-ray diffraction, and its surface morphology was examined by scanning electron microscope (SEM). In the experimental test, nanofiller content was added at a rate of 1, 2, and 3% by weight, which caused a gradual decrease in void fraction by 2.851, 2.533, and 1.724%, respectively, an increase from 2.7%. The atomic bonding mechanism shows molecular bonding between nanoparticles and fibers. At temperatures between 60 ℃ and 380 ℃, Thermogravimetric Analysis (TGA) analysis shows that NPs deposition improves the thermal properties of the fibers and causes negligible weight reduction (percentage). Thermal stability of the composites was therefore presented up to 380 ℃. The Fourier Transform Infrared Spectrometer (FTIR) spectrum confirms that nanoparticles have been deposited successfully on the fiber.

Preparation and Properties of Geopolymer for Cultural Asset Restoration (문화재 복원용 무기계 수지의 합성 및 특성)

  • Hwang, Yeon;Hwang, Sun-Do;Kang, Dae-Sik;Park, Mi-Hye
    • Journal of Conservation Science
    • /
    • v.25 no.1
    • /
    • pp.17-24
    • /
    • 2009
  • The feasibility of the geopolymer as a cultural asset restoration material was studied by investigating compressive strength and chromaticity change. Metakaolin that was synthesized by calcination of the kaolin at $750^{\circ}C$ for 6 hours was used as a geopolymeric starting material. Kaolin lost its crystallinity and changed into non-crystalline phase during calcination. NaOH solution and water glass were used as an initiator for the geopolymeric reaction. As the concentration of NaOH solution and water glass increased the compressive strength increased. When alumina was substituted with metakaolin, the compressive strength decreased at a small amount of alumina, but increased at a large substitution. For the most composition of geopolymers, the change of chroma values remained within the limit of slight variation after exposure to sunlight for 8 and 100 days. However, even small amount of organic pigment addition increased chroma values of metakaoline. It was shown that geopolymer had excellent chroma value change over epoxy resins.

  • PDF

In Vitro Evaluation of Shear Bond Strengths of Zirconia Cerami with Various Types of Cement after Thermocycling on Bovine Dentin Surface (지르코니아 표면 처리와 시멘트 종류에 따른 치면과의 전단 결합 강도 비교 연구)

  • Cho, Soo-Hyun;Cho, In-Ho;Lee, Jong-Hyuk;Nam, Ki-Young;Kim, Jong-Bae;Hwang, Sang-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.3
    • /
    • pp.249-257
    • /
    • 2007
  • State of problem : The use of zirconium oxide all-ceramic material provides several advantages, including a high flexural strength(>1000MPa) and desirable optical properties, such as shading adaptation to the basic shades and a reduction in the layer thickness. Along with the strength of the materials, the cementation technique is also important to the clinical success of a restoration. Nevertheless, little information is available on the effect of different surface treatments on the bonding of zirconium high-crystalline ceramics and resin luting agents. Purpose : The aim of this study was to test the effects of surface treatments of zirconium on shear bond strengths between bovine teeth and a zirconia ceramic and evaluate differences among cements Material and methods : 54 sound bovine teeth extracted within a 1 months, were used. They were frozen in distilled water. These were rinsed by tap water to confirm that no granulation tissues have left. These were kept refrigerated at $4^{\circ}C$ until tested. Each tooth was placed horizontally at a plastic cylinder (diameter 20mm), and embedded in epoxy resin. Teeth were sectioned with diamond burs to expose dentin and grinded with #600 silicon carbide paper. To make sure there was no enamel left, each was observed under an optical microscope. 54 prefabricated zirconium oxide ceramic copings(Lava, 3M ESPE, USA) were assigned into 3 groups ; control, airborne-abraded with $110{\mu}m$ $Al_2O_3$ and scratched with diamond burs at 4 directions. They were cemented with a seating force of 10 ㎏ per tooth, using resin luting cement(Panavia $F^{(R)}$), resin cement(Superbond $C&B^{(R)}$), and resin modified GI cement(Rely X $Luting^{(R)}$). Those were thermocycled at $5^{\circ}C$ and $55^{\circ}C$ for 5000 cycles with a 30 second dwell time, and then shear bond strength was determined in a universal test machine(Model 4200, Instron Co., Canton, USA). The crosshead speed was 1 mm/min. The result was analyzed with one-way analysis of variance(ANOVA) and the Tukey test at a significance level of P<0.05. Results : Superbond $C&B^{(R)}$ at scratching with diamond burs showed the highest shear bond strength than others (p<.05). For Panavia $F^{(R)}$, groups of scratching and sandblasting showed significantly higher shear bond strength than control group(p<.05). For Rely X $Luting^{(R)}$, only between scratching & control group, significantly different shear bond strength was observed(p<.05). Conclusion : Within the limitation of this study, Superbond $C&B^{(R)}$ showed clinically acceptable shear bond between bovine teeth & zirconia ceramics regardless of surface treatments. For the surface treatment, scratching increased shear bond strength. Increase of shear bond strength by sandblasting with $110{\mu}m$ $Al_2O_3$ was not statistically different.