• Title/Summary/Keyword: Crystalline Si photovoltaic modules

Search Result 20, Processing Time 0.023 seconds

Performance Ratio of Crystalline Si and Triple Junction a-Si Thin Film Photovoltaic Modules for the Application to BIPVs

  • Cha, Hae-Lim;Ko, Jae-Woo;Lim, Jong-Rok;Kim, David-Kwangsoon;Ahn, Hyung-Keun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.30-34
    • /
    • 2017
  • The building integrated photovoltaic system (BIPV) attracts attention with regard to the future of the photovoltaic (PV) industry. It is because one of the promising national and civilian projects in the country. Since land area is limited, there is considerable interest in BIPV systems with a variety of angles and shapes of PV panels. It is therefore expected to be one of the major fields for the PV industry in the future. Since the irradiation is different from each installation angle, the output can be predicted by the angles. This is critical for a PV system to be operated at maximum power and use an efficient design. The development characteristics of tilted angles based on data results obtained via long-term monitoring need to be analyzed. The ratio of the theoretically available and actual outputs is compared with the installation angles of each PV module to provide a suitable PV system for the user.

Fabrication of Series Connected c-Si Solar Strap Cells for the See-through Type Photovoltaic Modules (See-through 형태의 투광형 태양광 모듈 제조를 위한 직렬접합형 스트랩 제조 기술)

  • Min-Joon Park;Sungmin Youn;Minseob Kim;Eunbi Lee;Kiseok Jeon;Chaehwan Jeong
    • Current Photovoltaic Research
    • /
    • v.11 no.4
    • /
    • pp.114-117
    • /
    • 2023
  • Transparent Photovoltaic (PV) modules have recently been in the spotlight because they can be applied to buildings and vehicles. However, crystalline silicon (c-Si) solar modules, which account for about 90% of the PV module market, have the disadvantage of applying transparent PV modules due to their unique opacity. Recently, a see-through type PV module using a crystalline silicon solar strap has been developed. However, there is a problem due to a decrease in aesthetics due to the metal ribbon in the center of the see-through type PV module and difficulty bonding the metal ribbon due to the low voltage output of the strap. In this study, to solve this problem, we developed a fabrication process of series connected c-Si solar strap cells using the c-Si solar cells. We succeeded in fabricating a series connected strap with a width of 2-10 mm, and we plan to manufacture an aesthetic see-through type c-Si PV module.

A study of Comparative Analysis of CPV and PV Module through Long-term Outdoor Testing (장기 Outdoor Test를 통한 CPV와 PV 모듈의 발전량 비교분석)

  • Kim, Minsu;Lee, Yuri;Cho, Minje;Oh, Soo Young;Jung, Jae Hak
    • Current Photovoltaic Research
    • /
    • v.5 no.1
    • /
    • pp.33-37
    • /
    • 2017
  • Today, photovoltaic power generation mostly uses Si crystalline solar cell modules. The most vulnerable part of the Si solar cell module is that the power generation decreases due to the temperature rise. But, it is widely used because of low installation cost. In the solar market, where Si crystalline solar cell modules are widely used. The CPV (Concentrated Photovoltaic) module appeared in the solar market. The CPV module reduces the manufacturing cost of the solar cell by using non-Si in the solar cell. Also, there is an advantage that a rise in temperature does not cause a drop in power generation. But this requires high technology to install and has a disadvantage that the initial installation cost is expensive compared to normal Si solar cell module. So that we built a testbed to see these characteristics. The testbed was used to measure the amount of power generation in a long-term outdoor environment and compared with the general Si solar cell module.

Output characteristics of different type of si pv modules based on working condition (결정질 실리콘 태양전지 모듈의 종류에 따른 동작 조건별 특성 비교에 관한 연구)

  • Park, Chi-Hong;Kang, Gi-Hwan;Ahn, Hyung-Keun;Yu, Gwon-Jong;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.252-256
    • /
    • 2008
  • Photovoltaic (PV) modules output changes noticeable with variations in temperature and irradiance. In general it is has been shown that a $1^{\circ}C$ increase in temperature results in a 0.5% drop in output. In this paper, seven PV module types are analyzed for variation in temperature and irradiance, and the resulting output characteristics examined. The 7 modules types utilized are as follows; 3 poly crystalline modules, 2 single crystalline modules, 1 back contact single crystalline module and 1 HIT module. 3 groups of experiments are then conducted on the modules; tests with varying irradiance values, tests with module temperature varying under $25^{\circ}C$ and tests with module temperature varying over $25^{\circ}C$. The experiments results show that as temperature rises the follow is observed; Pmax decreases by 0.6%, Voc decreases by about 0.4%, and Isc increasing by between 0.03%${\sim}$0.08%. In addition, an irradiance decrease of 100 w/m2 translates into a 10% drop in Pmax.

  • PDF

Comparative Study on Performance of Grid-Connected Photovoltaic Modules in Tropical Monsoon Climate under Thailand condition (태국 열대몬순기후 조건에서 PV모듈 기술별 성능특성 비교 연구)

  • Kim, Seung Duck;Koh, Byung Euk;Park, Jin Hee;Cheon, Dae In
    • New & Renewable Energy
    • /
    • v.10 no.3
    • /
    • pp.39-46
    • /
    • 2014
  • The performances of three different types of photovoltaic (PV) module technologies namely, copper-indium-diselenide (CIGS), mono-crystalline silicon (mo-Si) and amorphous silicon (a-Si) have been comparatively studied in the grid-connected system for more than a year under the tropical monsoon climate of Thailand. The yields, performance ratios and system efficiencies for the respective PV module technologies have been calculated and a comparison is presented here. The performance ratios of the initial operation year for CIGS showed highest among the compared technologies under Thailand climate conditions by marking 97.0% while 89.6% for a-Si and 81.5% for mo-Si. Although mo-Si has shown highest efficiencies all over the period, under the testing conditions, the operating efficiency of mo-Si was down-graded from its reference value mainly due to high operating temperature and the efficiency of the tested CIGS module was also found as high as that of mo-Si in the study. Accordingly, outdoor assessment shows that CIGS modules have demonstrated high performance in terms of yields and performance ratios in Thailand climate conditions.

Changes in Optical Properties of Crystalline-Si PV Modules after Natural Light Exposure (자연광 노출 후 결정질 실리콘 PV모듈의 광학적 특성 변화)

  • Kong, Ji-Hyun;Ji, Yang-Guen;Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.64-64
    • /
    • 2010
  • This paper presents the results of changes of optical properties of front materials in crystalline PV modules. If PV modules on the outdoor, transmittance of front materials is reduced by solar light. That is UV, IR included Solar spectrum will have change the properties of glass. Therefore decrease in transmittance leads to loss of the PV modules output. All the PV modules showed the loss in Isc by 1~5% within few hors. To investigate the changes we are analyzed using spectrophotometer from raw glass to laminated glass.

  • PDF

Fabrication of Perforated Strings for Transparent Silicon Shingled Photovoltaic Modules (투광형 실리콘 슁글드 태양광 모듈을 위한 타공형 스트링 제작)

  • Kim, Han Jun;Park, Min-Joon;Song, Jinho;Jeong, Taewung;Moon, Daehan;Jeong, Chaehwan
    • Current Photovoltaic Research
    • /
    • v.8 no.4
    • /
    • pp.120-123
    • /
    • 2020
  • Transparent photovoltaics (PV) are used in various applications such as building-integrated photovoltaics (BIPV). However, crystalline silicon (c-Si) is not used for developing transparent PV due to its opaque nature. Here. we fabficate the three holes in 6-inch c-Si solar cells using laser scribing process with an opening area ratio of about 6.8% for transparent c-Si solar modules. Moreover, we make the shingled strings using the perforated cells. Our 7 interconnected shingled string PV cells with 21 holes show a solar to power conversion of 5.721 W. In next work, we will fabricate a transparent c-Si PV module with perforated strings.

Electrical Loss Reduction in Crystalline Silicon Photovoltaic Module Assembly: A Review

  • Chowdhury, Sanchari;Kumar, Mallem;Ju, Minkyu;Kim, Youngkuk;Han, Chang-Soon;Park, Jinshu;Kim, Jaimin;Cho, Young Hyun;Cho, Eun-Chel;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.7 no.4
    • /
    • pp.111-120
    • /
    • 2019
  • The output power of a crystalline silicon (c-Si) photovoltaic (PV) module is not directly the sum of the powers of its unit cells. There are several losses and gain mechanisms that reduce the total output power when solar cells are encapsulated into solar modules. Theses factors are getting high attention as the high cell efficiency achievement become more complex and expensive. More research works are involved to minimize the "cell-to-module" (CTM) loss. Our paper is aimed to focus on electrical losses due to interconnection and mismatch loss at PV modules. Research study shows that among all reasons of PV module failure 40.7% fails at interconnection. The mismatch loss in modern PV modules is very low (nearly 0.1%) but still lacks in the approach that determines all the contributing factors in mismatch loss. This review paper is related to study of interconnection loss technologies and key factors contributing to mismatch loss during module fabrication. Also, the improved interconnection technologies, understanding the approaches to mitigate the mismatch loss factors are precisely described here. This research study will give the approach of mitigating the loss and enable improvement in reliability of PV modules.

Optimal Design of PV Module with Bypass Diode to Reduce Degradation due to Reverse Excess Current

  • Jung, Tae-Hee;Kang, Gi-Hwan;Ahn, Hyung-Keun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.279-283
    • /
    • 2014
  • In this paper, we present an economical and practical standard to install a bypass diode in a thin-film PV module. This method helps to reduce heat generation and to prevent module degradation due to excess current from reverse bias. The experimental results confirm that for different numbers of solar cells, there is a relation between the excess reverse current and the degradation of solar cells in a-Si:H modules. The optimal number of solar cells that can be connected per bypass diode could be obtained through an analysis of the results to effectively suppress the degradation and to reduce the heat generated by the module. This technique could be expanded for use in high power crystalline Si PV modules.

Electrical Characteristics of c-Si Shingled Photovoltaic Module Using Conductive Paste based on SnBiAg (SnBiAg 전도성 페이스트를 이용한 Shingled 결정질 태양광 모듈의 전기적 특성 분석)

  • Yoon, Hee-Sang;Song, Hyung-Jun;Kang, Min Gu;Cho, Hyeon Soo;Go, Seok-Whan;Ju, Young-Chul;Chang, Hyo Sik;Kang, Gi-Hwan
    • Korean Journal of Materials Research
    • /
    • v.28 no.9
    • /
    • pp.528-533
    • /
    • 2018
  • In recent years, solar cells based on crystalline silicon(c-Si) have accounted for much of the photovoltaic industry. The recent studies have focused on fabricating c-Si solar modules with low cost and improved efficiency. Among many suggested methods, a photovoltaic module with a shingled structure that is connected to a small cut cell in series is a recent strong candidate for low-cost, high efficiency energy harvesting systems. The shingled structure increases the efficiency compared to the module with 6 inch full cells by minimizing optical and electrical losses. In this study, we propoese a new Conductive Paste (CP) to interconnect cells in a shingled module and compare it with the Electrical Conductive Adhesives (ECA) in the conventional module. Since the CP consists of a compound of tin and bismuth, the module is more economical than the module with ECA, which contains silver. Moreover, the melting point of CP is below $150^{\circ}C$, so the cells can be integrated with decreased thermal-mechanical stress. The output of the shingled PV module connected by CP is the same as that of the module with ECA. In addition, electroluminescence (EL) analysis indicates that the introduction of CP does not provoke additional cracks. Furthermore, the CP soldering connects cells without increasing ohmic losses. Thus, this study confirms that interconnection with CP can integrate cells with reduced cost in shingled c-Si PV modules.