• Title/Summary/Keyword: Crystal formation

Search Result 1,000, Processing Time 0.033 seconds

The effect of cooling rate on the nuclei of OISF formation in Si single crystals (실리콘 단결정에서 산화적층결함의 핵생성에 미치는 냉각속도의 영향)

  • 하태석;김병국;김종관;윤종규
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.3
    • /
    • pp.360-367
    • /
    • 1996
  • The OISF (Oxidation Induced Stacking Fault)is expected to affect the electrical properties in Si single crystals, and the nuclei of OISF are believed to be formed during the crystal growing process. Initial oxygen concentration, dopant type and its density, and cooling rate are regareded as major factors on OISF formation. In this study, the variations of OISF density under various cooling rate were investigated. Si single crystal was heated to $1400^{\circ}C$ in Ar ambient and cooled down to room temperature at different cooling rate, using horizontal tube furnace. After that, they were oxidized at $1150^{\circ}C$, and then, OISF was observed with optical microscope. The relation between oxide procipitates and OISF nucleation was investigated by FTIR analysis. As a result, it was found that there exists the intermediate cooling rate range in which OISF nucleation is highly enhanced. And also, it was found that OISF nucleation is closely related with silicon oxide procipitation in Si single crystals.

  • PDF

Characteristics of electrodeposited bismuth telluride thin films with different crystal growth by adjusting electrolyte temperature and concentration

  • Yamaguchi, Masaki;Yamamuro, Hiroki;Takashiri, Masayuki
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1513-1522
    • /
    • 2018
  • Bismuth telluride ($Bi_2Te_3$) thin films were prepared with various electrolyte temperatures ($10^{\circ}C-70^{\circ}C$) and concentrations [$Bi(NO_3)_3$ and $TeO_2:1.25-5.0mM$] in this study. The surface morphologies differed significantly between the experiments in which these two electrodeposition conditions were separately adjusted even though the applied current density was in the same range in both cases. At higher electrolyte temperatures, a dendrite crystal structure appeared on the film surface. However, the surface morphology did not change significantly as the electrolyte concentration increased. The dendrite crystal structure formation in the former case may have been caused by the diffusion lengths of the ions increasing with increasing electrolyte temperature. In such a state, the reactive points primarily occur at the tops of spiked areas, leading to dendrite crystal structure formation. In addition, the in-plane thermoelectric properties of $Bi_2Te_3$ thin films were measured at approximately 300 K. The power factor decreased drastically as the electrolyte temperature increased because of the decrease in electrical conductivity due to the dendrite crystal structure. However, the power factor did not strongly depend on the electrolyte concentration. The highest power factor [$1.08{\mu}W/(cm{\cdot}K^2$)] was obtained at 3.75 mM. Therefore, to produce electrodeposited $Bi_2Te_3$ films with improved thermoelectric performances and relatively high deposition rates, the electrolyte temperature should be relatively low ($30^{\circ}C$) and the electrolyte concentration should be set at 3.75 mM.

Interfacial degradation of thermal barrier coatings in isothermal and cyclic oxidation test

  • Jeon, Seol;Lee, Heesoo;Choi, Youngkue;Shin, Hyun-Gyoo;Jeong, Young-Keun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.4
    • /
    • pp.151-157
    • /
    • 2014
  • The degradation mechanisms of thermal barrier coatings (TBCs) were investigated in different thermal fatigue condition in terms of microstructural analyses. The isothermal and cyclic oxidation tests were conducted to atmospheric plasma sprayed-TBCs on NIMONIC 263 substrates. The delamination occurred by the oxide layer formation at the interface, the Ni/Cr-based oxide was formed after Al-based oxide layer grew up to ${\sim}10{\mu}m$ in the isothermal condition. In the cyclic oxidation with dwell time, the failure occurred earlier (500 hr) than in the isothermal oxidation (900 hr) at same temperature. The thickness of Al-based oxide layer of the delaminated specimen in the cyclic condition was ${\sim}4{\mu}m$ and the interfacial cracks were observed. The acoustic emission method revealed that the cracks generated during the cooling step. It was considered that the specimens were prevented from the formation of the Al-based oxide by cooling treatment, and the degradation mode in the cyclic test was dominantly interfacial cracking by the difference of thermal expansion coefficients of the coating layers.

Large-scale synthesis of the carbon coils using stainless steel substrate

  • Jeon, Young-Chul;Kim, Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.296-301
    • /
    • 2013
  • Carbon coils could be synthesized using $C_2H_2/H_2$ as source gases and $SF_6$ as an incorporated additive gas under the thermal chemical vapor deposition system. A 304-type stainless steel was used as a substrate with nickel powders as the catalyst. The surface of the substrate was pretreated using a sand paper or a mechanical drill to enhance the production yield of the carbon coils. The characteristics of the deposited carbon nanomaterials on the substrates were investigated according to the surface state on the stainless steel substrate. The protrusion induced by the grooves on the substrate surface could enhance the formation of the carbon nanomaterials having the coils geometries. The cause for the enhancement of the carbon coils formation by the grooves was suggested and discussed with the surface energies for the interaction between as-growing carbon elements. Finally, we could obtain the massive production yield of the carbon coils by the surface pretreatment using SiC sand papers on the several tens grooved stainless steel substrate.

Deposition of diamond thin film by MPECVD method (마이크로웨이브 화학 기상 증착법을 이용한 다이아몬드 박막의 증착)

  • Sung Hoon Kim;Young Soo Park;Jo-Won Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.1
    • /
    • pp.92-99
    • /
    • 1994
  • Diamond thin film was deposited on n type (100) Si substrate by MPECVD(Microwave plasma Enhanced Chemical Vapor Deposition). For the increase in nucleation density of diamond, Si substrate was pretreated by diamond powder or negative bias voltage was applied to the substrate during the initial deposition. In the case of retreated Si substrate, the diamond thin film quality was enhanced with increasing the total pressure in the range of 20~150 Torr. For the negative bias voltage, the formation condition of the diamond was seriously affected by $CH_4$ concentration and total pressure. The formation condition will be discussed with electrical current of substrate generated by plasma ions which depend on $CH_4$concentration, bias voltage, and total pressure.

  • PDF

Evaluation of Various Synthesis Methods for Calcite-Precipitated Calcium Carbonate (PCC) Formation

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Ahn, Ji Whan
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.279-286
    • /
    • 2017
  • This review paper evaluates different kinds of synthesis methods for calcite precipitated calcium carbonates by using different materials. The various processing routes of calcite with different compositions are reported and the possible optimum conditions required to synthesize a desired particle sizes of calcite are predicted. This paper mainly focuses on that the calcite morphology and size of the particles by carbonation process using loop reactors. In this regard, we have investigated various parameters such as $CO_2$ flow rate, Ca $(OH)_2$ concentration, temperature, pH effect, reaction time and loop reactor mechanism with orifice diameter. The research results illustrate the formation of well-defined and pure calcite crystals with controlled crystal growth and particle size, without additives or organic solvents. The crystal growth and particle size can be controlled, and smaller sizes are obtained by decreasing the Ca $(OH)_2$ concentration and increasing the $CO_2$ flow rate at lower temperatures with suitable pH. The crystal structure of obtained calcite was characterized by using X-ray diffraction method and the morphology by scanning electron microscope (SEM). The result of x-ray diffraction recognized that the calcite phase of calcium carbonate was the dominating crystalline structure.

Effects of an artificial hole on the crystal growth of large grain REBCO superconductor

  • Lee, Hwi-Joo;Hong, Yi-Seul;Park, Soon-dong;Jun, Byung-Hyuk;Kim, Chan-Joong;Lee, Hee-Gyoun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.3
    • /
    • pp.5-10
    • /
    • 2018
  • This study presents that various grain boundary junctions are prepared by controlling the seed orientation combined with an artificial hole in a melt process REBCO bulk superconductor. Large grain YBCO superconductors have been fabricated with various grain boundary junctions that the angle between the grain boundary and the <001> axis of Y123 crystal is $0^{\circ}$, $30^{\circ}$ and $45^{\circ}$, respectively. The presence of the artificial hole is beneficial for the formation of clean grain boundary junction and single peak trapped magnetic field profiles have been obtained. Artificial hole makes two growth fronts meet at a point on a periphery of the artificial hole. The presence of artificial hole is not likely to affect on the distribution of Y211 particles. The newly formed <110> facet lines are explained by the formation of new Y123/liquid interface with (010) crystallographic plane.

Studies on the Formation of Liquid Crystal and the Stability in W/O Emulsion Systems using Beeswax and Silicone Surfactant (Beeswax와 실리콘계 계면활성제를 사용한 W/O유화계에서 액정의 형성 및 안정도에 관한 연구)

  • Choi, Moon-Jae;Lee, Young-Moo;Jin, Byung-Suk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.279-288
    • /
    • 2004
  • Liquid crystal (LC) system was introduced into W/O emulsion in order to enhance the stability and moisturizing effect. The LC system, composed of beeswax, surfactant, and water was formed on the surface of emulsion droplet, which was investigated through a polarized microscope. The phenomenon that the viscosity in W/O emulsion system is decreased with time, was reduced by the formation of LC with the addition of beeswax. Centrifugal separation test showed that the stability of emulsion system was increased with the addition of beeswax to 3%. The color change of vitamin C was delayed in LC emulsion systems, which indicates stabilization effect against the oxidation of vitamin C. Evaporation rate in W/O emulsion was retarded by LC, so that high moisturizing effect is expected in W/O LC system.

Diopside DSD (crystal size distribution) in the Contact Metamorphic Aureole (Hwanggangni Formation) near the Daeyasan Granite Goesan, Korea (괴산지역 대야산 화강암체 주변 접촉변성대(황강리층)에서의 투휘석 결정 크기분포)

  • Kim, Sangmyung;Kim, Hyung-Shik
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.161-167
    • /
    • 1996
  • The CSD (crystal size distribution) of diopside crystals in the calc-silicate hornfels of the Hwanggangni Formation intruded by the Cretaceous Daeyasan granite shows the patterns of continuous nucleation and growth. There is correlation between the distance from the intrusion contact and the slopes from the linear part of log(population density) vs. size diagrams. In the log(population density) vs. size diagrams of the samples systematically collected from the intrusion contact, two different groups are recognized; the slopes for the samples near the intrusion contact (horizontal distance from the contact less than 50m) are gentler (1500$cm^{-1}$) than those for the samples away from the intrusion contact (2500$cm^{-1}$, distance from the contact greater than 100 m). These differences may reflect the differences in growth rates and crystallization time, or the differences in diopside-forming reactions. All of the log(population density) vs. size diagrams show depletion of smaller crystals. The observed depletion may be due to Ostwald ripening or the changes in nucleation rates as the reactant phases diminishes. Similar grouping is also possible for the observed degree of depletion of smaller crystals; the depletion decreases with increasing distance from the intrusion contact, suggesting temperature-dependent rates of Ostwald ripening.

  • PDF

On the Possibility of Bulk Large Diamond Single Crystal Synthesis with Hydrothermal Process

  • Andrzej M. Szymanski
    • Journal of the Mineralogical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.18-32
    • /
    • 1997
  • Analysis of geological data, relating to occurrence and formation of diamonds as well as host rocks, inclined author to have different outlook on the diamond genesis and to establish a proposition on their formation at pneumatolytic-hydrothermal conditions near superficial Earth zones. Based on that theoretical foundations and experimental works, the first low-pressure and low-temperature hydrothermal diamond synthesis from water solution in pressure autoclave was executed. As a result, the natural diamond seed crystal grew bigger ad coupling of the synthetic diamond single-crystalline grains were obtained. SEM documentation proofs that parallely paragenetic crystallization of quartz and diamond, and nucleation of new octahedral diamond crystals brush take place on the seed crystal surface. Forecast of none times growth of diamond industrial application at 2000 and seventeen times at 2010 with reference to 1995, needs technology of large and pure single-crystals diamond synthesis. Growth of the stable and destressed diamond single-crystals in the pseudo-metastable diamond plot, may be realized with processes going through the long time and with participation of free radicals catalysts admixtures only. Sol-gel colloidal processes are an example of environment which form stable crystals in thermodynamically unstable conditions through a long time. Paper critically discusses a whole way of studies on the diamond synthesis, from high-pressure and high-temperature processes through chemical vapour deposition up to hydrothermal experiments.

  • PDF