DOI QR코드

DOI QR Code

Evaluation of Various Synthesis Methods for Calcite-Precipitated Calcium Carbonate (PCC) Formation

  • Ramakrishna, Chilakala (Department of R&D Team, Hanil Cement Corporation) ;
  • Thenepalli, Thriveni (Mineral Processing Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Ahn, Ji Whan (Mineral Processing Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • Received : 2016.12.07
  • Accepted : 2017.01.31
  • Published : 2017.06.01

Abstract

This review paper evaluates different kinds of synthesis methods for calcite precipitated calcium carbonates by using different materials. The various processing routes of calcite with different compositions are reported and the possible optimum conditions required to synthesize a desired particle sizes of calcite are predicted. This paper mainly focuses on that the calcite morphology and size of the particles by carbonation process using loop reactors. In this regard, we have investigated various parameters such as $CO_2$ flow rate, Ca $(OH)_2$ concentration, temperature, pH effect, reaction time and loop reactor mechanism with orifice diameter. The research results illustrate the formation of well-defined and pure calcite crystals with controlled crystal growth and particle size, without additives or organic solvents. The crystal growth and particle size can be controlled, and smaller sizes are obtained by decreasing the Ca $(OH)_2$ concentration and increasing the $CO_2$ flow rate at lower temperatures with suitable pH. The crystal structure of obtained calcite was characterized by using X-ray diffraction method and the morphology by scanning electron microscope (SEM). The result of x-ray diffraction recognized that the calcite phase of calcium carbonate was the dominating crystalline structure.

Keywords

References

  1. Ajikumar, P. K., Wong, L. G., Subramanyam, G., Lakshminarayanan, R. and Valiyaveettil, S., "Synthesis and Characterization of Monodispersed Spheres of Amorphous Calcium Carbonate and Calcite Spherules," Cryst. Growth Des., 5(3), 1129-1134(2005). https://doi.org/10.1021/cg049606f
  2. Wei, W., Ma, G. H., Hu, G., Yu, D., McLeish, T., Su, Z. G. and Shen, Z. Y., "Preparation of Hierarchical Hollow $CaCO_3$ Particles and the Application as Anticancer Drug Carrier," J. Am. Chem. Soc., 130(47), 15808-15810(2008). https://doi.org/10.1021/ja8039585
  3. Helmlinger, G., Yuan, F., Dellian, M. and Jain, R. K., "Interstitial pH and $pO_2$ Gradients in Solid Tumors in vivo: High-resolution Measurements Reveal a Lack of Correlation," Nat. Med., 3, 177- 182(1997). https://doi.org/10.1038/nm0297-177
  4. He, X. W., Liu, T., Chen, Y. X., Cheng, D. J., Li, X. R., Xiao, Y. and Feng, Y. L., "Calcium Carbonate Nanoparticle Delivering Vascular Endothelial Growth Factor-C siRNA Effectively Inhibits Lymphangiogenesis and Growth of Gastric Cancer in vivo," Cancer Gene. Ther., 15(3), 193-202(2008). https://doi.org/10.1038/sj.cgt.7701122
  5. Thomas, J. A., Seton, L., Davey, R. J. and DeWolf, C. E., "Using a Liquid Emulsion Membrane System for the Encapsulation of Organic and Inorganic Substrates Within Inorganic Microcapsules," Chem. Commun., 10, 1072-1073(2002).
  6. El-Sheikh, S. M., Barhoum, A., El-Sherbiny, S., Morsy, F., El- Midany, A. A. and Rahier, H., "Preparation of Superhydrophobic Nanocalcite Crystals Using Box-Behnken Design," Arabian J. Chem., DOI: 10.1016/j.arabjc.2014.11.003 (2014).
  7. Kimura, T. and Koga, N., "Thermal Dehydration of Monohydrocalcite: Overall Kinetics and Physico-geometrical Mechanisms," J. Phys. Chem. A., 115, 10491-10501(2011). https://doi.org/10.1021/jp206654n
  8. Kim, I. W., Robertson, R. E. and Zand, R., "Effect of Some Nonionic Polymeric Additives on the Crystallization of Calcium Carbonate," Cryst. Growth Des., 5, 513-522(2005). https://doi.org/10.1021/cg049721q
  9. Barhoum, A., Rahier, H., Esmail Abou-Zaied, R., Rehan, M., Dufour, T., Hill, G. and Dufresne, A., "Effect of Cationic and Anionic Surfactants on the Application of Calcium Carbonate Nanoparticles in Paper Coating," ACS Appl. Mater. Interfaces., 6, 2734-2744(2014). https://doi.org/10.1021/am405278j
  10. El-Sheikh, S. M., El-Sherbiny, S., Barhoum, A. and Deng, Y., "Effects of Cationic Surfactants During the Precipitation of Calcium Carbonate," Colloids Surf. A., 422, 44-49(2013). https://doi.org/10.1016/j.colsurfa.2013.01.020
  11. Wen, Y., Xiang, L. and Jin, Y., "Synthesis of Plate Like Calcium Carbonate via Carbonation Route," Mater. Lett., 57, 2565-2571(2003). https://doi.org/10.1016/S0167-577X(02)01312-5
  12. Morsy, F. A., El-Sheikh, S. M. and Barhoum, A., "Nano-silica and $SiO_2/CaCO_3$ Nanocomposite Prepared from Semi-burned Rice Straw Ash as Modified Papermaking Fillers," Arab J. Chem., DOI: 10.1016/j.arabjc.2014.11.032 (2014).
  13. Ahn, J. W. and Park, C. H., "Controlling Factors of Particle Size Distribution During Formation of Cubic and Colloidal Calcium Carbonate Compounds," J. of Korean Inst. of Resources Recycling, 5(3), 65-72(1996).
  14. Ahn, J. W., Park, C. H., Kim, J. H., Lee, J. K. and Kim, H., "Synthesis of Ultrafine Calcium Carbonate Powders from High Concentrated Calcium Hydroxide Solution," Journal of Korean Association of Crystal Growth, 6(4), 509-520(1996).
  15. Ahn, J. W., Park, C. H., Kim, J. H., Lee, J. K. and Kim, H., "Synthesis of Ultrafine Calcium Carbonate Powders by Nozzle Spouting Method," Journal of Korean Ceramic Society, 33(11), 1276-1284 (1996).
  16. Park, M. J., Ahn, J. W. and Kim, H., "Study on the Dispersion Stability of Precipitated Calcium Carbonate Suspensions," Journal of Korean Ceramic Society, 38(4), 343-350(2001).
  17. Ahn, J. W., Lee, J. S., Joo, S. M., Kim, H. S., Kim, J. K., Han, C. and Kim, H., "Synthesis of Precipitated Calcium Carbonate in $Ca(OH)_2-CO_2-H_2O$ System by the Continuous Drop Method of $Ca(OH)_2$ Slurry," Journal of the Korean Ceramic Society, 39(4), 327-335(2002). https://doi.org/10.4191/KCERS.2002.39.4.327
  18. Ahn, J. W., Park, J. K., Lee, S. B., Cho, H. C., Han, C. and Kim, H., "Synthesis of Amorphous Calcium Carbonate in Ethanol and its Crystallization in the Aqueous Solution," Geosystem. Eng., 6(4), 106-111(2003). https://doi.org/10.1080/12269328.2003.10541212
  19. Ahn, J. W. and Park, C. H., "Formation and Crystallization of Calcium Carbonate in $C_2H_5OH-Ca(OH)_2-CO_2$ System by Ceramic Bubble Plate Reactor," J. of Korean Inst. of Resources Recycling., 5(3), 56-64(1996).
  20. Yang, Y., Ma, C. Y. and Wang, X. Z., "Optimisation and Closed-loop Control of Crystal Shape Distribution in Seeded Cooling Crystallisation of L-Glutamic Acid," The Int. Federation of Automatic Control., 216-221(2012).
  21. Montes-Hernandez, G., Fernandez-Martinez, A., Charlet, L., Tisserand, D. and Renard, F., "Textural Properties of Synthetic Nanocalcite Produced by Hydrothermal Carbonation of Calcium Hydroxide," J. Cryst. Growth 310(11), 2946-2953(2008). https://doi.org/10.1016/j.jcrysgro.2008.02.012
  22. Thriveni, T., Ramakrishna, C. H., Ahn, Y. J., Han, C. and Ahn, J. W., "Synthesis of Nano Precipitated Calcium Carbonate by Using a Carbonation Process Through a Closed loop Reactor," J. Korean Phys. Soc., 68(1) 131-137(2016). https://doi.org/10.3938/jkps.68.131
  23. Thriveni, T., Um, N., Nam, S. Y., Ahn, Y. J., Han, C. and Ahn, J. W., "Factors Affecting the Crystal Growth of Scalenohedral Calcite by a Carbonation Process," J. Korean Ceram. Soc., 51(2), 107-114 (2014). https://doi.org/10.4191/kcers.2014.51.2.107
  24. Ahn, J. W., Joo, S. M., Kim, H. S., Kim, D. H., Kim, J. P. and Kim, H., "Influence of Final Crystal with Synthesis of Basic Calcium Carbonate by Carbonation Process," Materials Science Forum., 439, 244-253(2003). https://doi.org/10.4028/www.scientific.net/MSF.439.244
  25. Ryu, M., Ahn, J. W., You, K., Goto, S. and Kim, H., "Synthesis of Calcium Carbonate in Ethanol-ethylene Glycol Solvent," Journal of the Ceramic Society of Japan., 117(1), 106-110(2009). https://doi.org/10.2109/jcersj2.117.106
  26. Morales, J. G., Burgues, J. T. and Clemente, R. R., "Nucleation of Calcium Carbonate at Different Initial pH Conditions," J. Cryst. Growth., 169(2), 331-338(1996). https://doi.org/10.1016/S0022-0248(96)00381-8
  27. Spanos, N. and Koutsoukos, P. G., "The Transformation of Vaterite to Calcite: Effect of the Conditions of the Solutions in Contact with the Mineral Phase," J. Cryst. Growth., 191, 783-790(1998). https://doi.org/10.1016/S0022-0248(98)00385-6
  28. Han, Y. S., Hadiko, G., Fuji, M. and Takahashi, M., "Crystallization and Transformation of Vaterite at Controlled pH," J. Cryst. Growth., 289, 269-274(2006). https://doi.org/10.1016/j.jcrysgro.2005.11.011
  29. Jones, L. and Atkins, P., Chemistry, 4th ed., Freeman, W. H. and company, New York, NY(2003).
  30. Ryu, M. Y., You, K. S., Ahn, J. W. and Kim, H., "Effect of the pH and Basic Additives on the Precipitation of Calcium Carbonate During Carbonation Reaction," Resour. Process., 54, 14-18(2007). https://doi.org/10.4144/rpsj.54.14
  31. Nishida, I., "Precipitation of Calcium Carbonate by Ultrasonic Irradiation," Ultrason. Sonochem., 11(6), 423-428(2004). https://doi.org/10.1016/j.ultsonch.2003.09.003
  32. Sonawane, S. H., Gumfekar, S. P., Kate, K. H., Meshram, S. P., Kunte, K. J., Ramjee, L., Mahajan, C. M., Parande, M. G. and Ashokkumar, M., "Hydrodynamic Cavitation-Assisted Synthesis of Nanocalcite," Intern. J. Chem. Engin., 2010, 1-8(2010).

Cited by

  1. Neue Möglichkeiten zur Gestaltung biogener Calcitpartikeln. Einfluss von Kultivierungsparametern und Aufreinigung auf Coccolitheneigenschaften vol.90, pp.4, 2017, https://doi.org/10.1002/cite.201700108
  2. Nucleation and growth kinetics of CaCO3 crystals in the presence of foreign monovalent ions vol.578, pp.None, 2017, https://doi.org/10.1016/j.jcrysgro.2021.126406