• Title/Summary/Keyword: Cryogenic test

Search Result 263, Processing Time 0.03 seconds

Design and manufacture of HTS current lead for 10kJ SMES (10kJ SMES용 고온초전도 전류리드의 설계 및 제작)

  • Park, Hae-Yong;Kim, Kwang-Min;Kim, Dae-Won;Kim, A-Rong;Park, Min-Won;Yu, In-Keun;Kim, Seok-Ho;Sim, Ki-Deok;Sohn, Myung-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.599_600
    • /
    • 2009
  • In superconducting magnetic energy storage (SMES) systems, the current leads are usually divided into two parts. Normal metals like brass or copper are often used in the first part from the room temperature to the 1st stage of the cryocooler. Their dimensions were decided to minimize the conduction heat penetration and Ohm's heat generation. The second part down to the cryogenic coil is made of high temperature superconductor (HTS). HTS current leads can reduce the conductive heat penetration because they have poor thermal conductivity and generate no Ohm's heat generation. The brass current lead and the HTS current lead were designed and fabricated for application to the 10kJ class SMES system. The HTS current lead is 300A class. The HTS current lead was stacked with 2 HTS layers using the $Bi_2Sr_2Ca_2Cu_3O_x$ (BSCCO)/Ag. In this paper, we introduce the design procedure of the current leads and discuss the test results of the current leads.

  • PDF

Evaluation of Structural Stability for a 75-tonf Class Thrust Chamber Mixing Head (75톤급 연소기 헤드부의 구조안정성 평가)

  • Ryu, Chul-Sung;Lee, Keum-Oh;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.515-519
    • /
    • 2011
  • Structural tests for the mixing head of a 75tonf class thrust chamber were performed to verify structural stability. The mixing head of a thrust chamber is loaded by high pressure with regeneratively cooled fuel and cryogenic liquid oxygen(LOx) as well as it transfers thrust load generated by liquid rocket engine. Therefore structural stability of mixing head is a very important factor to work without any plastic deformation or structural failure. In this study, two mixing heads were manufactured using different welding methods, Tungsten Inert Gas(TIG) welding and Electron Beam Welding(EBW) and evaluated a structural stability. The results of structural tests showed that the mixing head assembled by EBW can withstand the applied design load without any structural failures and be structurally more stable than that of TIG welding.

  • PDF

Performance Test of 2 kW Class Reverse Brayton Refrigeration System (냉동능력 2 kW 급 역브레이튼 극저온 냉각시스템 성능시험)

  • KO, JUNSEOK;LEE, KEUN-TAE;PARK, SEONG-JE;KIM, JONGWOO;CHOO, SANGYOON;HONG, YONG-JU;IN, SEHWAN;PARK, JIHO;KIM, HYOBONG;YEOM, HANKIL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.5
    • /
    • pp.429-435
    • /
    • 2020
  • This paper describes the experimental study of reverse-Brayton refrigeration system for application to high temperature superconductivity electric devices and LNG re-liquefaction. The reverse-Brayton refrigeration cycle is designed with operating pressure of 0.5 and 1.0 MPa, cooling capacity of 2 kW at 77 K, and neon as a working fluid. The refrigeration system is developed with multi scroll compressor, turbo expander and plate heat exchanger. From experiments, the performance characteristics of used components is measured and discussed for 77-120 K of operating temperature. The developed refrigeration system shows the cooling capacity of 1.23 kW at 77 K and 1.64 kW at 110 K.

A study on the transient cooling process of a vertical-high temperature tube in an annular flow channel (환상유로에 있어서 수직고온관의 과도적 냉각과정에 관한 연구)

  • 정대인;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.156-164
    • /
    • 1986
  • In the case of boiling on high temperature wall, vapor film covers fully or parcially the surface. This phenomenon, film boiling or transition boiling, is very important in the surface heat treatment of metal, design of cryogenic heat exchanger and emergency cooling of nuclear reactor. Mainly supposed hydraulic-thermal accidents in nuclear reactor are LCCA (Loss of Coolant Accident) and PCM (Power-Cooling Mismatch). Recently, world-wide studies on reflooding of high temperature rod bundles after the occurrence of the above accidents focus attention on wall temperature history and required time in transient cooling process, wall superheat at rewet point, heat flux-wall superheat relationship beyond the transition boiling region, and two-phase flow state near the surface. It is considered that the further systematical study in this field will be in need in spite of the previous results in ref. (2), (3), (4). The paper is the study about the fast transient cooling process following the wall temperature excursion under the CHF (Critical Heat Flux) condition in a forced convective subcooled boiling system. The test section is a vertically arranged concentric annulus of 800 mm long and 10 mm hydraulic diameter. The inner tube, SUS 304 of 400 mm long, 8 mm I.D, and 7 mm O.D., is heated uniformly by the low voltage AC power. The wall temperature measurements were performed at the axial distance from the inlet of the heating tube, z=390 mm. 6 chromel- alumel thermocouples of 76 .mu.m were press fitted to the inner surface of the heating tube periphery. To investigate the heat transfer characteristics during the fast transient cooling process, the outer surface (fluid side) temperature and the surface heat flux are computed from the measured inner surface temperature history by means of a numerical method for inverse problems of transient heat conduction. Present cooling (boiling) curve is sufficiently compared with the previous results.

  • PDF

On the Composites of Poly(ethylene terephthalate) with a Liquid Crystalline Polyester (액정 폴리에스테르와 폴리(에틸렌 테레프탈레이트)의 복합재료 연구)

  • Choi, Jae-Kon;Bang, Moon-Soo;Han, Chul
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.76-83
    • /
    • 1997
  • Blends of thermotropic liquid crystalline polymer(TLCP) with poly(ethylene terephthalate) (PET) were prepared by the coprecipitation from a common solvent. The blends were processed through a capillary die at $287^{\circ}C$ to produce a monofilament. Morphology and mechanical, thermal properties of blends and composites were examined by differential scanning calorimetry(DSC), tensile test, optical microscopy and scanning electron microscopy. Crystallization kinetics of the blends were investigated by the isothermal DSC method. The Avrami analyses were applied to obtain the information on the crystal growth geometry and factors controlling the rate of crystallization. In the blends, liquid crystalline phase did not reveal any significant macrophase separation and thermal degradation at the processing temperature. From scanning electron micrographs of cryogenic fracture surfaces of extruded fibers, the TLCP domains were found to be more or less finely dispersed with $0.1{\mu}m$ to $0.2{\mu}m$ in size. Interfacial adhesion between the TLCP and matrix polymer was excellent. Tensile strength and modulus of TLCP/PET in-situ fiber composites were enhanced with increasing draw ratio and LCP content.

  • PDF

Design and Fabrication of Full-Scale Regenerative Cooling Combustion Chamber (${\varepsilon}$=12) of Liquid Rocket Engine for Ground Hot Firing Tests (지상연소시험용 실물형 재생냉각 연소기(확대비 12)의 설계 및 제작)

  • Kim, Jong-Gyu;Han, Yeoung-Min;Seo, Seong-Hyeon;Lee, Kwang-Jin;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.114-118
    • /
    • 2007
  • Design and fabrication of a 30-tonf-class full-scale regenerative cooling combustion chamber of a liquid rocket engine for a ground hot firing test are described. It has chamber pressure of 60 bar and nozzle expansion ration of 12 and manufactured to have a single welded structure of· the mixing head and the chamber. The material of the mixing head is STS316L which has excellent mechanical property in cryogenic condition. The chamber comprise of the cylinder, nozzle throat, and 1st/2nd nozzle parts. The material of the inner jacket is copper alloy/STS329J1/STS316L and that of the outer jacket is STS329J1. The components of· the combustor were manufactured by mechanical processing including lathing, milling, MCT, rolling and pressing. The machined components were integrated to a single body by means of general welding, electron beam welding(EBW), and brazing.

  • PDF

OPTO-MECHANICAL DESIGN OF THE KASINICS (KASINICS의 광기계부 설계)

  • Yuk, I.S.;Lee, S.L.;Jin, H.;Seon, K.I.;Pak, S.;Lee, D.H.;Nam, U.W.;Moon, B.K.;Cha, S.M.;Han, J.Y.;Kyeong, J.M.;Kim, K.H.;Yang, J.S.
    • Publications of The Korean Astronomical Society
    • /
    • v.20 no.1 s.24
    • /
    • pp.143-149
    • /
    • 2005
  • KASI (Korea Astronomy and Space Science Institute) is developing the near-infrared camera system named KASINICS (KASI Near-Infrared Camera System) which will be installed at the 60cm f/13.5 Ritchey-Chretien telescope of the Sobaeksan Optical Astronomy Observatory (SOAO). The camera system is optimized for JHKL bands and has a 6 arcmin FOV. The optical system consists of two spherical mirrors and a 8-position filter wheel. With the exception for the dewar window, all optical elements are cooled inside cryogenic dewar. Since the Offner system is adopted to prevent thermal noises from outside of the telescope primary mirror, the secondary mirror of the Offner system acts as a cold Lyot stop. The optical performance does not change by temperature variations because the Aluminum mirrors contract and expand homogeneously with its mount. We finished the design and fabrication of the optical parts and are now aligning the optical system. We plan to have a test observation on 2006 January.

Measurements of Vibration and Pressure of an Oxidizer Pump for a 7-tonf Turbopump with a Modified Rear Floating Ring Seal (수정된 후방 플로팅 링 실을 적용한 7톤급 터보펌프 산화제 펌프의 진동 및 압력 측정)

  • Bae, JoonHwan;Kwak, Hyun-Duck;Choi, ChangHo;Choi, JongSoo
    • Tribology and Lubricants
    • /
    • v.36 no.5
    • /
    • pp.253-261
    • /
    • 2020
  • In this paper, we present an experimental investigation of the frequency characteristics and a visual inspection of an oxidizer pump with a modified rear-floating ring seal for a 7-tonf turbopump. An oxidizer pump typically operates at high rotational speeds and under cryogenic conditions. Despite its low hydraulic efficiency, the floating ring seal is frequently employed as a leakage control solution for turbomachinery because it effectively reduces abrasion by friction. When the oxidizer pump starts up, the floating ring moves excursively but locks up stably against the pump casing when the contact pressure increases. The compressive force on the floating ring depends on the hydrodynamic forces induced by the flow through the floating ring. This force is controlled by the nose position of the floating ring. Based on a validation test for a 7-tonf turbopump with two types of floating rings, we concluded that the floating ring with a small diameter nose can move easily with a low contact pressure in the cooling path. This leads to instability of the pressure fluctuation around the floating ring. In contrast, a floating ring with a large diameter nose has a high contact pressure and attaches strongly to the casing, which causes wear and frictional oxidation between the contact surfaces of the impeller and the floating ring.

Development of the Low Pressure Piping System for the Liquid Rocket LOX Feed System (액체로켓 LOX 공급계의 저압 배관시스템 개발)

  • Jun, Sang-In;Jung, Jin-Taeg;Kim, Woo-Kyum;Park, Joon-Seong;Kwon, Oh-Sung;Kim, Young-Mog
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.322-325
    • /
    • 2007
  • This paper shows the development procedure of the low pressure LOX feed system which is used in the liquid rocket with a turbopump. Korean Air has cooperated with KARI in developing the LOX feed system to turbopump. The LOX feed system is characterized with cryogenic temperature and the thin-thickness tube for weight saving. The system in this project is composed with a main feed line and a recirculation line for the LOX temperature conditioning. Each piping system has many components, namely, bellows, filter, orifice, valves, flange and support. In this paper, system design & manufacturing, structural & thermal analyses, and component tests are explained. Finally, the system was assembled to the KARI's PTF test facility and functioned well to meet its required performance.

  • PDF

RETF 액체산소 공급설비 및 엔진 수류시험

  • Han, Yeoung-Min;Cho, Nam-Kyung;Kim, Seung-Han;Chung, Yong-Ghap;Park, Sung-Jin;Lee, Kwang-Jin;Kim, Young-Han;Moon, Il-Yoon
    • Aerospace Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.123-131
    • /
    • 2002
  • In this paper, characteristics of cryogenic liquid oxygen was examined during cold flow of KSR-III main engine at each stage. The effect of venting was examined at the stage of cooling and at the pressurization stage, the interaction between nitrogen gas and liquid oxygen was also examined. The characteristic of liquid oxygen in the engine manifold was analyzed. The results showed that venting was the primary role at the cooling process and the interaction of nitrogen gas and liquid oxygen in the run tank is limited at the surface area. With the sampling rate of 1KHz static and dynamic pressure were measured in the rocket engine manifold and in the LOX supply equipment. 32.5mm and 38mm orifice were installed for the tests and pressure condition of liquid oxygen was 23Bar, 29Bar, 41Bar. Increase of orifice diameter and decrease of supply pressure reduced the perturbation of pressure in engine manifold.

  • PDF