• Title/Summary/Keyword: Cruciform specimen

Search Result 22, Processing Time 0.031 seconds

The Evaluation of Residual Stresses in the Welded Joint of Steel Materials by the Optimum Selection of the Advanced Indentation Technique (연속압입시험의 최적조건 선정을 통한 철강재료의 용접부 잔류응력 평가)

  • Yu, Seung-Jong;Kim, Joo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.2 s.191
    • /
    • pp.118-126
    • /
    • 2007
  • Most of materials receive forces in use so that the characteristics of materials must be considered in system design to prevent deformation or destruction. Mechanical properties of materials can be expressed as responsible level of material itself under the exterior operation. Main mechanical properties are strength, hardness, ductility and stiffness. Currently, among major measure facilities to measure the mechanical properties, advanced indentation technique has important use in industrial areas due to nondestructive and easy applications for mechanical tensile properties and evaluation of residual stress of materials. This study is to find the optimum experimental condition about residual stress advanced indentation technique for accurate analysis of the welded joint of steel materials through indentation load-depth curve obtained from cruciform specimen experiment. Optimum selection was applied to the welded joint of real steel materials to find out non-equi-biaxial stress state and the results were compared with general residual stress analyzing method fur verification.

A study on the fatigue characteristics of SM 490 A material due to the welding type (SM 490 A 재질에 대한 용접 유형에 따른 피로특성 연구)

  • Kim, Jae-Hoon;Goo, Byung-Choon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.274-278
    • /
    • 2004
  • This study investigates the fatigue characteristics of SM 490 A material specimens for the railway vehicle due to the welding type. The more stress ratio decreases, the more strength of fillet welded specimen decreases. At speciallly, when the stress ratio of TN(Plate with transverse fillet welded rib) specimens decreases 0.5, 0.1, and -0.1, the fatigue limit decreases unifomly. The strength of TN is higher than it of NCN in the compare of fillet welding type, but the strength of NCN(Non load-carrying cruciform fillet welded joint) is higher than it of CN(Load-carrying cruciform fillet welded joint), which these specimens have the rib in the both side. We analysis the strains on the weld positions of the TN specimens during the fatigue test for the investigation of crack initiation and crack growth. In the theses results, we could find the fatigue crack initiation point and time.

  • PDF

A Experimental Study on the Fatigue Strength Evaluation of Load-Carrying Weldments with Lack of Penetration (부분용입된 하중전달 십자형 용접부의 피로강도 평가에 관한 실험적 연구)

  • 박상흡;이용복;남병찬;정진성
    • Proceedings of the KWS Conference
    • /
    • 2000.04a
    • /
    • pp.260-263
    • /
    • 2000
  • In this study, constant amplitude fatigue tests on load-carrying fillet welded specimen carried out, and fatigue strengths were evaluated. Also, an attempt is made to develop a new analytical model with more accuracy to predict the fatigue crack propagation life of fillet welded cruciform joints of SWS 490B steels containing lack of penetration defects. from the result of this study, fatigue crack growth characteristics of load-carrying fillet welded cruciform joints, containing lack of penetration defacts are found to be affected by the weld geometry and the number of weld pass.

  • PDF

A Study on Estimation of Infinite Fatigue Life in Cruciform Fillet Welded Joint (십자형 필릿 용접부에서의 무한 피로수명 평가에 관한 연구)

  • Lee, Yong-Bok
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.1
    • /
    • pp.19-25
    • /
    • 2013
  • The joining methods of steel structures of gas facilities, bridges, ships etc. by welding are composed mostly of T-type or cruciform fillet welding and full penetration or partial penetration according to the uses and the shape of the structures. In this study, it was examined the characteristics of fatigue crack according to penetration depth in relation to material thickness in the cruciform fillet welded joints. From the results, it was investigated the safe design stresses within the range of infinite life. When the LOP length is long the range of infinite life is small with root failure and when the LOP length is short the range of infinite life is large with teo failure. For the specimen of material thickness, 20mm welded by 3 pass compared with 10mm, 15mm welded by 2 pass, the fatigue strength and the range of infinite life was more improved by increasing of notch toughness from formation of micro-ferrite acicular structure.

Plastic Deformation Characteristic of AZ31 Magnesium alloy Sheet (AZ31 마그네슘 합금판재의 소성변형특성)

  • Park J. G.;Kim Y. S.;Kuwabara Toshihiko;You B. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.64-68
    • /
    • 2005
  • In recent years, there has been a growth of the manufacture and application of magnesium products because of its small specific gravity as well as its relatively high strength. However, there are so many studies to assure good formability because magnesium sheet alloy is difficult to form. In this study, uniaxial tensile and biaxial tensile test of AZ31 magnesium sheet alloy with thickness of 1.2mm were performed at room temperature. Uniaxial tensile test were performed until $7\%$ of engineering strain. R-values and stress-strain curve were obtained. Biaxial tensile tests with cruciform specimen were performed until the breakdown of the specimen occurs. The yield loci are made by application of plastic work theory. The results are compared with the theoretical predictions based on the Hill and Logan-Hosford model. However, next study will be performed at warm-temperature because the specimens are broken under the $0.5\%$ of equivalent strain at biaxial tensile test.

  • PDF

Plastic deformation characteristic of titanium alloy sheet (Ti-6Al-4V) at elevated temperature (티타늄 합금판재(Ti-6Al-4V)의 고온 소성면형특성(1))

  • Park, J.G.;Kim, J.H.;Park, N.K.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.158-163
    • /
    • 2009
  • Titanium alloy sheets have excellent specific strength and corrosion resistance as well as good performance at high temperature. Recently, titanium alloys are widely employed not only aerospace parts but also bio prothesis and motorcycle. However, due to the low formability and large spring back at room temperature, titanium alloy sheets were usually formed by slow forming or hot forming with heating die and specimen. In the sheet metal forming area, FE simulation technique to optimize forming process is widely used. To achieve high accuracy FE simulation results, Identification of material properties and deformation characteristic such as yield function are very important. In this study, uniaxial tensile and biaxial tensile test of Ti-6Al-4V alloy sheet with thickness of 1.0mm were performed at elevated temperature of 873k. Biaxial tensile tests with cruciform specimen were performed until the specimen was breakdown to characterize the yield locus of Ti-6Al-4V alloy sheet. The experimental results for yield locus are compared with the theoretical predictions based on Von Mises, Hill, Logan-Hosford, and Balat's model. Among these Logan-Hosford's yield criterion well predicts the experimental results.

  • PDF

Research for Fatigue Life Extension Techniques in Weldments via Pneumatic Hammer Peening (공압식 헤머피닝을 이용한 용접부 피로수명 연장기술 연구)

  • Han, Jeong-Woo;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.842-848
    • /
    • 2009
  • Fatigue failures are often occurred at welded joints where stress concentrations are relatively high due to the joint geometry. Although employing good detail design practices by upgrading the welded detail class enables to improve the fatigue performance, in many cases, the modification of the detail may not be practicable. As an alternative, the fatigue life extension techniques that reduce the severity of the stress concentration at the weld toe region, remove imperfections and introduce local compressive welding residual stress, have been applied. These techniques are also used as definite measures to extend the fatigue life of critical welds that have failed prematurely and have been repaired. In this study, a hammer peening procedure for using commercial pneumatic chipping hammer was developed, and the effectiveness is quantitatively evaluated. The pneumatic hammer peening makes it possible to give the weld not only a favorable shape reducing the local stress concentration, but also a beneficial compressive residual stress into material surface. In the fatigue life calculation of non-load carrying cruciform specimen treated by the pneumatic hammer peening, the life was lengthened about ten times at a stress range of 240MPa, and fatigue limit increased over 65% for the as-welded specimen.

Plastic Deformation Characteristic of AZ31 Magnesium Alloy Sheet (AZ31 마그네슘 합금판재의 소성변형특성)

  • Park J. G.;Kuwabara T.;You B. S.;Kim Y. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.520-526
    • /
    • 2005
  • In recent years, there has been a growth of the manufacture and application of magnesium products because of its small specific gravity as well as its relatively high strength. However, there are so many studies to assure good formability because magnesium sheet alloy is difficult to form. In this study, uniaxial tensile and biaxial tensile tests of AZ31 magnesium sheet alloy with thickness of 1.2mm were performed at room temperature. Uniaxial tensile tests were performed until $7{\%}$ of engineering strain. Lankford values and stress-strain curve were obtained. Biaxial tensile tests with cruciform specimen were performed until the breakdown of the specimen occurs. The yield loci were calculated by application of plastic work theory. The results are compared with the theoretical predictions based on the Hill and Logan-Hosford model. In this study, Hill's 1979 yield function for the case of m=2.8 and Logan-Hosford yield function for the case of M=8 give good agreements with experimental results. However, next study will be performed at warm-temperature because the specimens are broken under the $0.5{\%}$ of equivalent strain at biaxial tensile test.

State of Art for Biaxial Tensile Test Systems (2축 인장 시험 방법에 관한 고찰)

  • Park, J.G.;Ahn, D.C.;Nam, J.B.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.3
    • /
    • pp.222-228
    • /
    • 2011
  • This paper is a review of biaxial tensile test equipments and specimens. The stresses acting on a component in service are multiaxial in nature. Therefore, it is necessary to consider the mechanical properties of sheet materials not only under uniaxial but also under these multiaxial stress states. Biaxial testing of metal in industry becomes an important investigation tool for the evaluation of mechanical properties of sheet metals. In this paper, several types of biaxial tensile tests were reviewed, and their advantages and limitations were discussed.

Experimental behaviour of extended end-plate composite beam-to-column joints subjected to reversal of loading

  • Hu, Xiamin;Zheng, Desheng;Yang, Li
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.307-321
    • /
    • 2006
  • This paper is concerned with the behaviour of steel and concrete composite joints subjected to reversal of loading. Three cruciform composite joint specimens and one bare steel joint specimen were tested so that one side of the beam-to-column connection was under negative moment and another side under positive moment. The steelwork beam-to-column connections were made of bolted end plate with an extended haunch section. Composite slabs employing metal decking were used for all the composite joint specimens. The moment-rotation relationships for the joints were obtained experimentally. Details of the experimental observations and results were reported.