• Title/Summary/Keyword: Cruciferous vegetables

Search Result 66, Processing Time 0.02 seconds

Changes in Glucosinolate Component Content in Urine After Ingestion of Fresh and Cooked Broccoli (신선한 브로콜리와 조리된 브로콜리 섭취 후 소변으로 배설되는 Glucosinolates 대사물질의 함량 변화)

  • Hwang, Eun-Sun
    • Korean journal of food and cookery science
    • /
    • v.26 no.6
    • /
    • pp.804-810
    • /
    • 2010
  • Sulforphane (SF) is a family of biologically active compound that is distributed widely in broccoli. Although studies in rodents have shown that these compounds are effective and versatile inhibitors of tumorigenesis, the role of dietary SF in protection against human cancers remains to be established. The objective of this study was to explore the quantitative relationship between the dietary intake of cruciferous vegetables and urinary excretion of SF. The effects of dietary broccoli on the body's ability to detoxify were studied in six male subjects between the ages of 22~30 years. Study included administering a glucosinolate-free diet for 8 days (control period). The broccoli diet was further subdivided into two periods; 250 g broccoli was fed per day during the first three days and 500 g broccoli was fed per day during the latter three days. After an 8-day washout period, a second experiment was conducted. The same protocol was used with the exception that uncooked broccoli was consumed. Urinary SF mercapturate was measured to determine the bioavailability of broccoli. The linear trend for mercapturate excretion was dose-dependent, resulting in 3.8- and 1.9-fold increase by the third and six days, respectively, compared to the control. Lower amount of SF-NAC conjugate was detected in cooked broccoli compared to fresh broccoli suggesting cooking may have caused a significant loss in glucosinolates in cruciferous vegetables. Therefore, SF can be used as a biomarker for intake of cruciferous vegetables.

Isothiocyanates in Brassica: Potential Anti Cancer Agents

  • Sharma, Anubhuti;Sharma, Ashok;Yadav, Prashant;Singh, Dhiraj
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.9
    • /
    • pp.4507-4510
    • /
    • 2016
  • Isothiocyanates are naturally occurring small molecules that are formed from glucosinolate precursors of cruciferous vegetables. Many isothiocyanates, both natural and synthetic, display anti-carcinogenic activity because they reduce activation of carcinogens and increase their detoxification. This minireview summarizes the current knowledge on isothiocyanates and focuses on their role as potential anti-cancer agents.

Genetic Diversity and Population Structure of the Xanthomonas campestris pv. campestris Strains Affecting Cabbages in China Revealed by MLST and Rep-PCR Based Genotyping

  • Chen, Guo;Kong, Congcong;Yang, Limei;Zhuang, Mu;Zhang, Yangyong;Wang, Yong;Ji, Jialei;Fang, Zhiyuan;Lv, Honghao
    • The Plant Pathology Journal
    • /
    • v.37 no.5
    • /
    • pp.476-488
    • /
    • 2021
  • Xanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot for cruciferous vegetables worldwide, especially for the cole crops such as cabbage and cauliflower. Due to the lack of resistant cabbage cultivars, black rot has brought about considerable yield losses in recent years in China. Understanding of the pathogen features is a key step for disease prevention, however, the pathogen diversity, population structure, and virulence are largely unknown. In this study, we studied 50 Xcc strains including 39 Xcc isolates collected from cabbage in 20 regions across China, using multilocus sequence genotyping (MLST), repetitive DNA sequence-based PCR (rep-PCR), and pathogenicity tests. For MLST analysis, a total of 12 allelic profiles (AP) were generated, among which the largest AP was AP1 containing 32 strains. Further cluster analysis of rep-PCR divided all strains into 14 DNA groups, with the largest group DNA I comprising of 34 strains, most of which also belonged to AP1. Inoculation tests showed that the representative Xcc strains collected from diverse regions performed differential virulence against three brassica hosts compared with races 1 and 4. Interestingly, these results indicated that AP1/DNA I was not only the main pathotype in China, but also a novel group that differed from the previously reported type races in both genotype and virulence. To our knowledge, this is the first extensive genetic diversity survey for Xcc strains in China, which provides evidence for cabbage resistance breeding and opens the gate for further cabbage-Xcc interaction studies.

Educational attainment and differences in fruit and vegetable consumption among middle-aged adults in the Korean National Health and Nutrition Examination Survey IV

  • Hong, Seo-Ah;Kim, Ki-Rang;Kim, Mi-Kyung
    • Nutrition Research and Practice
    • /
    • v.6 no.3
    • /
    • pp.263-269
    • /
    • 2012
  • We investigated whether socioeconomic differences affect fruit and vegetable (FV) consumption with respect to total intake and intake of various FV subgroups. Our study included 6667 adults aged 40-64 years who completed a dietary survey in the fourth Korean NHANES (2007-2009). FV intake was estimated from 24-hour recalls and food frequency questionnaires. Differences in FV consumption related to educational attainment were analyzed according to different nutritional categories of FV. Both men and women in the low-education group had the lowest intake of total FV and total fruits, and women also had the lowest intake of total vegetables. Also lowest in this group was consumption of mushrooms and vegetables (excluding kimchi) among men, and cruciferous and allium vegetables (excluding Chinese cabbage and radish) among women, while kimchi consumption was the highest in this group. Additionally, an association between educational level and intake of citrus fruits was evident among men. Adults in the low-education group consumed less carotene-rich FV, red fruit and/or vegetables, and dark-green leafy vegetables, fewer total vegetable dishes, and fewer types of fruit than in other groups. Men in this group had the lowest intake of yellow/orange fruit and/or vegetables, and women consumed the least folate-rich FV. There is a clear association between educational attainment and FV intake with regard to total intake, and to specific nutrients, bioactive compounds, colors, and variety.

A Synergistic Effect of Chitosan and Lactic Acid Bacteria on the Control of Cruciferous Vegetable Diseases

  • Lin, Yu-Chen;Chung, Kuang-Ren;Huang, Jenn-Wen
    • The Plant Pathology Journal
    • /
    • v.36 no.2
    • /
    • pp.157-169
    • /
    • 2020
  • Two lactic acid bacteria (LAB) designated J02 and J13 were recovered from fermented vegetables based on their ability to suppress soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum (Pcc) on radish. J02 and J13 were identified as Lactobacillus pentosus and Leuconostoc fallax, respectively. The ability of J02 and J13 to suppress plant diseases is highly dependent on chitosan. LAB alone has no effect and chitosan alone has only a moderate effect on disease reduction. However, J02 or J13 broth cultures plus chitosan display a strong inhibitory effect against plant pathogens and significantly reduces disease severity. LAB strains after being cultured in fish surimi (agricultural waste) and glycerol or sucrose-containing medium and mixed with chitosan, reduce three cruciferous vegetable diseases, including cabbage black spot caused by Alternaria brassicicola, black rot caused by Xanthomonas campestris pv. campestris, and soft rot caused by Pcc. Experimental trials reveal that multiple applications are more effective than a single application. In-vitro assays also reveal the J02/chitosan mixture is antagonistic against Colletotrichum higginsianum, Sclerotium rolfsii, and Fusarium oxysporum f. sp. rapae, indicating a broad-spectrum activity of LAB/chitosan. Overall, our results indicate that a synergistic combination of LAB and chitosan offers a promising approach to biocontrol.

Modulation of Biotransformation Enzymes by Phytochemicals: Impact of Genotypes

  • Lampe Johanna W.
    • Proceedings of the Korean Society of Food Science and Nutrition Conference
    • /
    • 2004.11a
    • /
    • pp.65-70
    • /
    • 2004
  • Modulation of biotransformation enzymes is one mechanism by which a diet high in fruits and vegetable may influence cancer risk. Inhibition of cytochrome P450s (CYP) and concomitant induction of conjugating enzymes are hypothesized to reduce the impact of carcinogens in humans. Thus, exposure to types and amounts of phytochemicals may influence disease risk. Like other xenobiotics, many classes of phytochemicals are rapodly conjugated with glutathione, glucuronide, and sulfate moieties and excreted in urine and bile. In humans, circulating phytochemical levels very widely among individuals even in response to controlled dietary interventions. Polymorphisms in biotransformation enzymes, such as the glutathione S-transferases (GST), UDP-glucuronosyltransferases (UGT), and sulfotransferases (SULT), may ocntribute to the variability in phytochemical clearance and efficacy; polymorphic enzymes with lower enzyme activity prolong the half-lives of phytochmicals in vivo. Isothiocyanates (ITC) in cruciferous vegetables are catalyzed by the four major human GSTs: however reaction velocities of the enzymes differ greatly. In some observational studies of cancer, polymorphisms in the GSTMI and GSTTI genes that result in complete lack of GSTM1-1 protein, respectively, confer greater protection from cruciferous vegetable in individuals with these genotypes. Similarly, we have shown in a controlled dietary trial that levels of GST-alpha-induced by ITC-are higher in GSTMI-null individuals exposed to cruciferous vegetablse. The selectivity of glucuronosyl conjugation of flavonoids is dependent both on flavonoid structure as well as on the UGI isozyme involved in its conjuagtion. The effects of UGI polymorphisms on flavonoid clearnace have not been examind; but polymorphisms affect glucuronidation of several drugs. Given the strong interest in the chemopreventive effects of flavonoids, systematic evaluation of these polymorphic UGTs and flavonoid pharmacokinetics are warranted. Overall, these studies suggest that for phytochemicals that are metabolized by, and affect activity of, biotransformation enzymes, interactions between genetic polymorphisms in the enzymes and intake of the compounds should be considered in studies of cancer risk. Genetic polymorphisms in biotransformation enzymes may account in prat for individual variation in metabolism of a wide range of phytochemicals and their ultimate impact on health.

  • PDF

Antibacterial activity of isothiocyanates from cruciferous vegetables against pathogenic bacteria in olive flounder (십자화과 채소 유래 isothiocyanates의 넙치 어병세균에 대한 항균활성)

  • Ko, Mi-Ok;Ko, Jeong-Yeon;Kim, Mi-Bo;Lim, Sang-Bin
    • Food Science and Preservation
    • /
    • v.22 no.6
    • /
    • pp.886-892
    • /
    • 2015
  • The antimicrobial effects of ten isothiocyanates (ITCs) present in cruciferous vegetables and radish root hydrolysate were investigated against pathogenic bacteria from olive flounder. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were measured against two gram-positive bacterial strains (Streptococcus parauberis, S. iniae) and four gram-negative bacterial strains (Edwardsiella tarda, Vibrio ichthyoenteri, V. harveyi, Photobacterium damselae) by using a broth microdilution technique. The antibacterial activity of ITCs was in the order sulforaphane > sulforaphene > phenylethyl ITC > erucin > benzyl ITC > iberin > I3C > allyl ITC > phenyl ITC > hexyl ITC. The susceptibility of fish pathogens to ITCs was in the order of V. harveyi > E. tarda > P. damselae > S. parauberis > S. iniae > V. ichthyoenteri. Antimicrobial activity (MIC) of radish root hydrolysate was 0.250 mg/mL against S. iniae, 0.438 mg/mL against S. parauberis, and 0.500 mg/mL against both E. tarda and V. harveyi. The aliphatic ITCs were potent inhibitors of the growth of fish pathogens, followed by aromatic ITCs and indolyl ITC. The presence of a double bond in the chemical structure of ITCs decreased antibacterial activity, while ITCs with a thiol (-S-) group and a longer carbon chain increased antibacterial activity. These results suggest that ITCs have strong antibacterial activities and may be useful in the prevention of fish pathogens.

Identification of Antimutagenic Compound from Kale by High Performance liquid Chromatography and Mass Spectrometry

  • Lee, Seon-Mi;Rhee, Sook -Hee;Yoo, Jong-Shin;Park, Kun-Young
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.4
    • /
    • pp.334-338
    • /
    • 1998
  • Kale(Brassica oleracea var. acephala) is one of Cruciferous vegetables that is closely related to the wild ancestral form of cabbabe. The ethanol extract of kale which contains the active compoundsss under Salmonella assay system was fractionated with chloroform to collect the nonpolar solvent soluble compounds, and then further fractionation was carried out by silica gel column chromatography. Among kale extracts separated by silical gel column chromatography, the fractions of 4, 5 and 6 exhibited strong antimutagenic activities. The major active compounds from the fraction were identified as chlorophyll derivatives by the analysis with HPLC-fritp-MS. The molecular weights of each chlorophyll derivatives in the sample were acquired from the peaks of positive ion atomosphere pressure chemical ionization (APCI) mas spectrometry.

  • PDF

Cholesterol-Lowering Effect and Anticancer Activity of Kimchi and Kimchi Ingredients (김치와 김치재료의 콜레스테롤 저하 및 항암효과)

  • 이재준;정영기
    • Journal of Life Science
    • /
    • v.9 no.6
    • /
    • pp.743-752
    • /
    • 1999
  • The purpose of the paper is to explore the current knowledge on the nutritional evaluation, cholesterol-lowering effect and antitumor activity of kimchi and its ingredients(Korean cabbage, garlic, red pepper powder, ginger and onion). Kimchi contains high contents of nutrients such as vitamins(ascorbic acid, $\beta$-carotene and vitamin B complex), minerals(calcium, potassium, iron and phosphorous), essential amino acids and dietary fiber. Kimch also contains high levels of lactic acid bacteria, allicin, capsaicin, organic acid, phenol compounds, flavonoid and sulfur compounds. The dietary fiber and lactic acid bacteria isolated from kimchi are effective in improving intestinal microflora of human. Isoluble dietary fiber shows anticancer activity, but soluble dietary fiber shows hypocholesterolemic effect. Lactic acid bacteria isolated from kimchi acts as a hypocholesterolemic or anticancer agent. A major ingredient of kimchi is mainly cruciferous and allium family vegetables, which were also reported to prevent cancer and atherosclerosis. It is suggested that kimchi is important not only as one of the traditional fermented Korean food but also as therapeutic agent for carcinogenesis and hypercholesterolemic state.

  • PDF

CHEMOPREVENTION OF COLON AND MAMMARY CANCER BY THE KOREAN FOOD STUFFS

  • Kim, Dae-Joong;Byeongwoo Ahn;Kang, Jin-Seok;Nam, Ki-Taek;Park, Mina;Shin, Dong-Hwan;Jang, Dong-Deuk
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10b
    • /
    • pp.15-15
    • /
    • 2001
  • In the present study, we examined the chemopreventive effects of indole-3-carbinol (I3C), a constituent of cruciferous vegetables (the Family of Cruciferae) such as cabbages, cauliflowers and broccoli on multiple intestinal neoplasia (Min) genetic mouse model and on mouse colon carcinogenesis induced by azoxymethane (AOM) as well as on rat mammary carcinogenesis induced by 7, 12-dimethybenz[$\alpha$]anthracene (DMBA).(omitted)

  • PDF