Changes in Glucosinolate Component Content in Urine After Ingestion of Fresh and Cooked Broccoli

신선한 브로콜리와 조리된 브로콜리 섭취 후 소변으로 배설되는 Glucosinolates 대사물질의 함량 변화

  • 황은선 (전주대학교 가정교육과)
  • Received : 2010.10.13
  • Accepted : 2010.11.11
  • Published : 2010.12.31

Abstract

Sulforphane (SF) is a family of biologically active compound that is distributed widely in broccoli. Although studies in rodents have shown that these compounds are effective and versatile inhibitors of tumorigenesis, the role of dietary SF in protection against human cancers remains to be established. The objective of this study was to explore the quantitative relationship between the dietary intake of cruciferous vegetables and urinary excretion of SF. The effects of dietary broccoli on the body's ability to detoxify were studied in six male subjects between the ages of 22~30 years. Study included administering a glucosinolate-free diet for 8 days (control period). The broccoli diet was further subdivided into two periods; 250 g broccoli was fed per day during the first three days and 500 g broccoli was fed per day during the latter three days. After an 8-day washout period, a second experiment was conducted. The same protocol was used with the exception that uncooked broccoli was consumed. Urinary SF mercapturate was measured to determine the bioavailability of broccoli. The linear trend for mercapturate excretion was dose-dependent, resulting in 3.8- and 1.9-fold increase by the third and six days, respectively, compared to the control. Lower amount of SF-NAC conjugate was detected in cooked broccoli compared to fresh broccoli suggesting cooking may have caused a significant loss in glucosinolates in cruciferous vegetables. Therefore, SF can be used as a biomarker for intake of cruciferous vegetables.

본 연구는 건강한 남성들을 대상으로 신선한 브로콜리와 조리된 브로콜리를 섭취시킨 후, glucosinolates의 가수분해물질인 ITC가 mercapturic acid pathway를 거쳐 소변을 통해 배설되는 양을 측정하였다. 브로콜리를 섭취시키기 전 8일간은 glcusinolate가 함유되지 않는 식사(control period)를 섭취하도록 하였다. 그 이후에 조리되지 않은 신선한 브로콜리를 각각 3일간 250 g과 500 g씩 섭취시키면서 실험기간 동안 배설되는 소변을 수집하였다. 1차 실험이 종료된 후에 다시 8일 동안의 세척기간을 거친 후, 전자레인지에 가열한 브로콜리를 250 g과 500 g씩 각각 3일간 섭취시키면서 실험기간 내내 소변을 수집하였다. 수집된 소변으로부터 SF mercapturic acid의 양을 측정하여 HPLC로 분석하였다. 섭취한 브로콜리의 양과 소변으로 배설되는 mercapturic acid의 양은 직선의 상관관계를 보였다. 대조군과 비교할 때, 신선한 브로콜리를 섭취했을 때, 소변으로 배설되는 mercapturic acid의 양이 3일과 6일째 각각 3.8배와 1.9배 증가하였다. 브로콜리를 전자레인지에 익혀서 섭취시켰을 때는 소변으로 배설되는 mercapturic acid의 양이 신선한 경우와 비교하여 감소하였다. 이는 가열조리를 통해 glucosinolate의 양이 감소하였음을 의미한다. 식이로 섭취한 glucosinolate로부터 전환된 ITC가 소변으로 배설되는 생체마커를 측정하고 십자화과 채소를 통해 섭취하는 SF의 양과 소변을 통해 배설되는 양과의 상관관계가 있음을 확인하였다. 본 실험결과는 십자화과 채소 섭취의 양을 예측하는 유용한 생체마커로 활용할 수 있을 것으로 사료된다.

Keywords

References

  1. Brusewitz G, Cameron BD, Chasseaud LF, GorlerK, Hawkin R, Koch H, Mennicke WH. 1977. The metabolism of benzyl isothiocyanate and its cysteine conjugate. Biochem J 162: 99-107 https://doi.org/10.1042/bj1620099
  2. Chung F-L. 1992. Chemoprevention of lung carcinogenesis by aromatic isothiocyanates. In Cancer Chemoprevention, L Wattenberg, M Lipkin, CW Boone, and GJ Kelloff (eds). Boca Raton, FL: CRC, pp 227-244
  3. Duncans AJ, Rabot S, Nugon-Baudon L. 1997. Urinary mercapturic acids as markers for the determination of isothiocyanate release from glucosinolates in rats fed a cauliflower diet. J Sci Food Agric 73:214-220 https://doi.org/10.1002/(SICI)1097-0010(199702)73:2<214::AID-JSFA706>3.0.CO;2-#
  4. Eklind KI, Morse MA, Chung F-L. 1990. Distribution and metabolism of the natural anticarcinogen phenethyl isothiocyanate in A/J mice. Carcinogenesis(Lond) 11:2033-2036 https://doi.org/10.1093/carcin/11.11.2033
  5. Fenwick GR, Heaney RK, Mullin WJ. 1983. Glucosinoalates and their breakdown products in food and food plants. Crit Rev Food Sci Nutr 18:123-201 https://doi.org/10.1080/10408398209527361
  6. Gamet-Payrastre L, Li P, Lumeau S, Cassar G, Dupont MA, Chevolleau S, Gasc N, Tulliez J, Terce F. 2000. Sulforaphane, a naturally occurring isothiocyanate, induce cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res 60:1426-1433
  7. Getahun SM, Chung F-L. 1999. Conversion of glucosinolates to isothiocyanates in humans after ingestion of cooked watercress. Cancer Epidemiol Biomark Prev 8:447-451
  8. Hwang ES, Jeffery EH. 2003. Evaluation of urinary N-acetylcysteinyl allylisothiocyanate as biomarker for intake and bioactivity of Brussels sprouts. Food Chem Toxicol 41:1817- 1825 https://doi.org/10.1016/S0278-6915(03)00235-7
  9. Ioannou YM, Burka LT, Matthews HB. 1984. Allyl isothiocyanate: comparative disposition in rats and mice. Toxicol Appl Pharmacol 75:173-181 https://doi.org/10.1016/0041-008X(84)90199-6
  10. Jiao D, Ho CT, Foiles P, Chung F-L. 1994. Identification and quantification of the N-actetylcysteine conjugate of allylisothiocyanate in human urine after ingestion of mustard. 3:487-492
  11. Kong AN, Yu R, Chen C, Mandlekar S, Primiano T. 2000. Signal transduction events elicited by natural products: role of MAPK and caspase pathways in homeostatic response and induction of apoptosis. Arch Pharm Res 23:1-16 https://doi.org/10.1007/BF02976458
  12. Kurilich AC, Tsau GJ, Brown A, Howard L, Klein BP, Jeffery EH, Kushad M, Wallig MA, Juvik JA. 1999. Carotene, tocopherol, and ascorbate contents in subspecies of Brassica oleracea. J Agric Food Chem 47:1576-1581 https://doi.org/10.1021/jf9810158
  13. Kushad MM, Brown AF, Kurilich AC, Juvik JA, Klein BP, Wallig MA, Jeffery EH. 1999. Variation of glucosinolates in vegetable crops of Brassicaoleracea. J Agric Food Chem 47:1541- 1548 https://doi.org/10.1021/jf980985s
  14. Matusheski NV, Jeffery EH. 2001. Comparison of the bioactivity of two glucoraphanin hydrolysis products found in broccoli, sulforaphane and sulforaphane nitrile. J Agric Food Chem 49:5743-5749 https://doi.org/10.1021/jf010809a
  15. Mennicke WH, Gorler K, Krumbiegel G, Lorenz D, Rittmann N. 1988. Studies on the metabolism and excretion of benzyl isothiocyanate in man. Xenobiotica 18:441-447 https://doi.org/10.3109/00498258809041680
  16. Mennicke WH, Gorler K, Krumbiegel G. 1983. Metabolism of some naturally occurring isothiocyanates in the rat. Xenobiotica 13:203-207 https://doi.org/10.3109/00498258309052256
  17. Mennicke WH, Kral T, Krumbigel G, Rittman N. 1987. Determination of N-acetyl-S-(N-alkylthiocarbamoyl)-L-cysteine, a principal metabolite of alkylisothiocyanates in rat urine. J Chromatogr 414:19-24 https://doi.org/10.1016/0378-4347(87)80020-8
  18. Nijhoff WA, Mulder TP, Verhagen H, van Poppel G, Peters WH. 1995. Effects of consumption of Brussels sprouts on plasma and urinary glutathione S-transferase class-a and -p in humans. Carcinogenesis 16:955-957 https://doi.org/10.1093/carcin/16.4.955
  19. Seow A, Shi C-Y, Chung F-L, Jiao D, Hankin JH, Lee H-P. 1998. Urinarytotal isothiocyanate (ITC) in a population-based sample ofmiddle-aged and older Chinese in Singapore: relationship with dietary total ITC and glutathione S-transferase M1/T1/P1 genotypes. Cancer Epidemol Biomark Prev 7: 775-781
  20. Shapiro TA, Fahey JW, Wade KL, Stephenson KK, Talalay P. 1998. Human metabolism and excretion of cancer chemoprotective glucosinolates and isothiocyanates of Cruciferous vegetables. Cancer Epidemiol Biomark Prev 7:1091-1100
  21. Singletary K, MacDonald C. 2000. Inhibition of benzo[a]pyrene and 1,6-dinitropyrene-DNA adduct formation in human mammary epithelial cells by dibenzoylmethane and sulforaphane. Cancer Lett 155:47-54 https://doi.org/10.1016/S0304-3835(00)00412-2
  22. Van Poppel G, Verhoeven DT, Verhagen H, Goldbohm RA. 1999. Brassica vegetables and cancer prevention. Epidemiology and mechanisms. Adv Exp Med Biol 472:159-168
  23. Verhoeven DTH, Goldbloom RA, van Poppel G, Verhagen H, van den Brandt PA. 1996. Epidemiological studies on Brassica vegetables and cancer risk. Cancer Epidemiol Biomarkers Prev 5:733-751
  24. Volden J, Wicklund T, Verkerk R, Dekker M. 2008. Kinetics of changes in glucosinolate concentrations during long-term cooking of white cabbage (Brassica oleracea L. ssp. capitata f. alba). J Agric Food Chem 56:2068-2073 https://doi.org/10.1021/jf0731999
  25. Whitty JP, Bjeldanes LF. 1987. Effects of dietary cabbage on xenobiotic metabolizing enzymes and the binding of aflatoxin B1 to hepatic DNA in rats. Food Chem Toxicol 24: 405-415
  26. Zhang Y, Talalay P, Cho CG, Posner GH. 1992. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Nat Acad Sci USA 89:2399-2403 https://doi.org/10.1073/pnas.89.6.2399
  27. Zhang Y, Wade KL, Prestera T, Talalay P. 1996. Quantitative determination of isothiocyanates, dithiocarbamates, carbon disulfide, and related thiocarbonyl compounds by cyclocondensation of 1,2-benzenedithiol. Anal Biochem 239:160-167 https://doi.org/10.1006/abio.1996.0311