• 제목/요약/키워드: Cross-sectional deformation

검색결과 119건 처리시간 0.022초

2차원 튜브벤딩의 단면 변형에 관한 실험적 연구: 인장, 벤딩 시퀀스 및 벤딩 각도 중심으로 (An Experimental Study on Cross-sectional Deformation in 2D Tube Bending: Stretch, Bending Sequence and Bending Angle)

  • 하태광
    • 소성∙가공
    • /
    • 제32권4호
    • /
    • pp.221-227
    • /
    • 2023
  • While tube bending is a conventional forming technique, it is still used to make curved products for load-bearing members or aesthetically pleasing parts in various manufacturing industries such as automotive, aerospace, and others. Whole or local deformation of the final product such as springback, distortion, or local buckling are of interest in metal forming or precision manufacturing. In this paper, the factors affecting the cross-sectional deformation are explored. A 5-axis stretch bending machine was used for two-dimensional bending with extruded AA6082-T4 rectangular tubes. Three different bending sequences were employed: stretch before bending, stretch after bending, simultaneous bending and stretch. Furthermore, by considering both the stretch and bending angle, cross-sectional deformation was also analyzed. It was observed that employing stretch bending techniques can effectively reduce cross-sectional deformation and contribute to overall quality enhancement. Through this study, it was revealed that these factors have an impact on the cross-sectional deformation of the tubes.

LFFD 및 SFFD를 이용한 3차원 라스트 데이터 생성시스템 개발 (Three Dimensional Last Data Generation System Design Utilizing SFFD and LFFD)

  • 김시경;박인덕
    • 제어로봇시스템학회논문지
    • /
    • 제12권2호
    • /
    • pp.113-118
    • /
    • 2006
  • A new last design approach based on the Limb line FFD (LFFD) and Scale factor FFD (SFFD) is presented in this paper. The proposed last design method utilizes the dynamic trimmed parametric patches for the measured foot 3D data and last 3D data. Furthermore, the proposed last data generation system utilizes cross sectional data extracted obtained from the measured 3D foot data. First, the last design rule of the LFFD is constructed on the FFD lattice based on foot last shape analysis. Secondly, SFFD is constructed on the LFFD new lattice based on scale factor deformation. The scale factor is constructed on the boundary edges of polygonized patch and the cross section last data boundary edge of the polygon object. Suppose the two boundary curves have been preprocessed so that they run in the same direction and they forms the SF(Scale Factor). In addition, the control points of FFD lattice are derived with cross. sectional data interpolation methods from a finite set of 3D foot data.

동맥 전단부의 역학적분석을 위한 새로운 실험적 방법 (A New Experimental Method of Mechanical Analysis for Arterial Cross-Section Research)

  • 황민철;신정욱
    • 대한의용생체공학회:의공학회지
    • /
    • 제16권2호
    • /
    • pp.149-156
    • /
    • 1995
  • 동맥전단부를 연구할수있는 새로운 실험방법과 기계역학적 분석방법을 제시하였다. 지금까지동맥역학적 연구는 대부분이 동맥의 길이방향과 원주방향에 대한것이 이였다. 두께방향의 변형은 포아손비라든지 비압축성가정으로 이론적으로 결정되었다. 또한 두께에 걸친 변형의 변화도 무시되었다. 그러나 병리학적인 의미에서 동맥의 두께에 걸친 변형도와 변형의 분포는 중요한 의미를 가진다. 그러므로 본연구에서 제안된 실험방법과 장치는 두께전반에 걸친 변형을 측정할수 있게 했다. 또한 전단부의 부위별 변형도의 관찰이 가능하고 병리적인 동맥경화증에 대한 현상과 역학적현상을 상관시킬 수 있음에 중요한 의미를 들 수 있다.

  • PDF

단면 분할 FFD를 이용한 3D 라스트 데이터 생성시스템 개발 (Three Dimensional Last Data Generation System Utilizing Cross Sectional Free Form Deformation)

  • 김시경;박인덕
    • 제어로봇시스템학회논문지
    • /
    • 제11권9호
    • /
    • pp.768-773
    • /
    • 2005
  • A new approach for human foot modelling and last design based on the cross sectional method is presented in this paper. The proposed last design method utilizes the dynamic trimmed parametric patches for the foot 3D data and last 3D data. The cross section a surface of 3D foot for the 3D last, design modeling of free form geometric last shapes. The proposed last design scheme wraps the 3D last data surrounding the measured 3D foot data with the effect of deforming the last design rule The last design rule of the FFD is constructed on the FFD lattice based on foot-last shape analysis. In addition, the control points of FFD lattice are constructed with cross sectional data interpolation methods from the a finite set of 3D foot data. The deformed 3D last result obtained from the proposed FFD is saved as a 3D dxf foot data. The experimental results demonstrate that the last designed with the proposed scheme has good performance.

최소 열변형을 위한 자동차 디스크 브레이크 단면형상의 다구찌기법 기반 최적설계 (Optimization of an Automotive Disc Brake Cross-section with Least Thermal Deformation by Taguchi Method)

  • 김철;하태준
    • 한국자동차공학회논문집
    • /
    • 제24권1호
    • /
    • pp.1-9
    • /
    • 2016
  • Optimum cross-sectional shape of an automotive disc brake was developed based on FEM thermal analyses and the Taguchi method. Frictional heat flux and convection heat transfer coefficients were first calculated using equations and applied to the disc to calculate accurate temperature distribution and thermal deformations under realistic braking conditions. Maximum stress was generated in an area with highest temperature under pads and near the hat of ventilated disc and vanes. The SN ratio from Taguchi method and MINITAB was applied to obtain the optimum cross-sectional design of a disc brake on the basis of thermal deformations. The optimum cross-section of a disc can reduce thermal deformation by 15.2 % compared to the initial design.

한국형 틸팅열차용 복합재 차체의 하중적재에 따른 구조적 특성고찰 (Structural Characteristics of a Hybrid Composite Carbody of Korean Tilting Train by Weight Load)

  • 김정석;정종철;한정우;이상진;김승철;서승일
    • 한국철도학회논문집
    • /
    • 제9권3호
    • /
    • pp.251-256
    • /
    • 2006
  • This paper explains manufacturing process, analysis and experimental studies on a hybrid composite carbody of Korean tilting train. The composite carbody with length of 23m was manufactured as a sandwich structure composed of a aluminium honeycomb core and woven fabric carbon/epoxy faces. In order to evaluate deformational behavior of the composite carbody, the static load test under vertical load has been conducted. From the test, the vertical deflection an겨 cross sectional deformation of the carbody were analysed and measured. The maximum deflection along the side sill was 9.25mm in the experiment and 8.28mm in the analysis. The maximum cross sectional deformation was measured 5.42mm at carbody center in lateral direction and 4.06mm at roof center in vertical direction.

Zeroth-Order Shear Deformation Micro-Mechanical Model for Periodic Heterogeneous Beam-like Structures

  • Lee, Chang-Yong
    • 동력기계공학회지
    • /
    • 제19권3호
    • /
    • pp.55-62
    • /
    • 2015
  • This paper discusses a new model for investigating the micro-mechanical behavior of beam-like structures composed of various elastic moduli and complex geometries varying through the cross-sectional directions and also periodically-repeated along the axial directions. The original three-dimensional problem is first formulated in an unified and compact intrinsic form using the concept of decomposition of the rotation tensor. Taking advantage of two smallness of the cross-sectional dimension-to-length parameter and the micro-to-macro heterogeneity and performing homogenization along dimensional reduction simultaneously, the variational asymptotic method is used to rigorously construct an effective zeroth-order beam model, which is similar a generalized Timoshenko one (the first-order shear deformation model) capable of capturing the transverse shear deformations, but still carries out the zeroth-order approximation which can maximize simplicity and promote efficiency. Two examples available in literature are used to demonstrate the consistence and efficiency of this new model, especially for the structures, in which the effects of transverse shear deformations are significant.

입자 영상 해석을 이용한 고분자 지지체 변형 측정 (Deformation Measurement of Polymer Scaffold Using Particle Image Analysis)

  • 강민제;오상훈;이계한
    • 한국정밀공학회지
    • /
    • 제33권1호
    • /
    • pp.69-75
    • /
    • 2016
  • Polydimethylsiloxane (PDMS) is used as a scaffold for cell culture. Because both the stress and strain acting on the substrate and the hemodynamic environment are important for studying mechano-transduction of cellular function, the traction force of the surface of a substrate has been measured using fluorescence images of particle distribution. In this study, deformation of the cross-sectional plane of a PDMS block was measured by correlating particle image distributions to validate the particle image strain measurement technique. Deformation was induced by a cone indentor and a shearing parallel plate. Measured deformations from particle image distributions were in agreement with the results of a computational structure analysis using the finite-element method. This study demonstrates that the particle image correlation method facilitates measurement of deformation of a polymer scaffold in the cross-sectional plane.

Spot-GTA 용접자세에 따른 304 스테인리스강 용융지 표면 및 용접부 형상 거동 (Behavior of Weld Pool Shape and Weld Surface Deformation as a Function of Spot-GTA Welding Position for 304 Stainless Steel)

  • 강남현;박영도;조경목
    • Journal of Welding and Joining
    • /
    • 제26권2호
    • /
    • pp.62-68
    • /
    • 2008
  • Effects of gravitational orientation on gas tungsten arc welding (GTAW) for 304 stainless steel were studied to determine the critical factors for weld pool formation, such as weld surface deformation and weld pool shape. This study was accomplished through an analytical study of weld pool stability as a function of primary welding parameters (arc current and arc holding time), material properties (surface tension and density), and melting efficiency (cross-sectional area). The stability of weld pool shape and weld surface deformation was confirmed experimentally by changing the welding position. The arc current and translational velocity were the major factors in determining the weld pool stability as a function of the gravitational orientation. A 200A spot GTAW showed a significant variation of the weld pool formation as the arc held longer than 3 seconds, however the weld pool shape and surface morphology for a 165A spot GTAW were 'stable', i.e., constant regardless of the gravitational orientation. The cross-sectional area of the weld (CSA) was one of the critical factors in determining the weld pool stability. The measured CSA ($13.5mm^2$) for the 200A spot GTAW showed a good agreement with the calculated CSA ($14.9mm^2$).

비선형 단면해석을 통한 합성지하벽의 휨 거동 분석 및 설계 (Analysis and Design on the Flexural Behavior of Composite Basement Wall Through Nonlinear Sectional Analysis)

  • 서수연;김현우
    • 대한건축학회논문집:구조계
    • /
    • 제36권2호
    • /
    • pp.145-153
    • /
    • 2020
  • The purpose of this study is to investigate the effects of composition of underground structural wall and H-pile in soil cement. The results of previous experimental studies are re-analyzed and the nonlinear cross-sectional analyses of composite basement walls are performed to verify their nonlinear flexural behavior. Based on the study, it is explained how the gap deformation between H-Pile and RC wall should be considered in the design of flexure of composite underground walls. The nonlinear cross-sectional analysis shows that the load-displacement curves of composite basement wall specimens exhibiting flexural behavior exist between the results of the analysis of the complete and non-composite cases. When predicting the behavior of the composite basement wall by nonlinear cross-sectional analysis, the flexural behavior of the composite basement wall could be suitably predicted by considering the reduction of the composite ratio due to tensile stress acting on shear connectors.