• Title/Summary/Keyword: Cross-hole sonic logging

Search Result 6, Processing Time 0.045 seconds

Integrity Test of DCM Treated Soils with a Cross-hole Sonic Logging (시추공간 음파검층법을 이용한 심층혼합 개량지반의 건전도 조사)

  • 김진후;조성경
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.73-78
    • /
    • 2001
  • Soundness evaluation of a structure being constructed under the sea is usually difficult. In this study, a cross-hole sonic logging(CSL) which have been used for non-destructive test of concrete piles is adopted for the integrity test and monitoring of DCM(deep cement mixing) treated soils. Chemical and physical characteristics of raw ground materials are analysed to delineate ground environmental effects on the strength of DCM treated soils. In order to convert cross-hole sonic logging data into compressive strength, correlations between compressive strengths and wave velocities of core samples have been obtained. It is found that there is little effect of ground environment on the strength of the DCM treated soils, and the density distribution of core samples and cross-hole logging data show that a defective zone may exist in the DCM treated soils. With the time lapse, however, the defective zone has been cured and consequently, compressive strength of the DCM treated soils increases and satisfies the design parameter. From this study it can be concluded that the cross-hole sonic logging can be used for the integrity test as well as monitoring the curing stage of the structures, successfully.

  • PDF

Case Study on the Vertical Capacity of the Repaired Large Diameter Rock-Socketed Stool Pipe Pile (보수된 대구경 암반 소켈강관말뚝의 연직지지력에 관한 사례연구)

  • 최용규;김승종;김병희;이광욱;김상일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.185-192
    • /
    • 1999
  • It had found that, as a result of cross-hole tonic logging test, concrete was not filled partially within the bottom 2.0 m of the large diameter (Ø= 2,500mm) rock socketed pile, MP20-P11(socket diameter (Ø= 2,200mm), which was a pile among piles group supporting a pier of Kwangan Grand Bridge. The pile was repaired by the combined cement grout injected through the pipes for the cross-hole sonic logging test and the bore holes for core samples. A month after the cement grouting, repairing was checked by coring and cross-hole sonic logging then 3 times of grouting and 2 times of coring were, in turns, peformed, then repairing was completed successfully. The vertical compressive capacity of the repaired large diameter socketed pile was evaluated by several formulas and software ROCKET, and was more conservative than design load (1,882 ton) of MP20-P11. It is expected that, in the case of the battered socketed piles, it could be more reasonable to analyze the behaviors of a battered pile using 3-D model. A 3-D analysis will be peformed in the future study.

  • PDF

Integrity test and depth estimation of deep foundations (깊은 기초의 건전도시험과 근입깊이 조사)

  • Jo Churl-hyun;Jung Hyun-key;Lee Tai-sup;Kim Hag-soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.202-216
    • /
    • 1999
  • The deep foundation is frequently used for the infrastructures. Since the quality control of the cast-in-place concrete foundations such as CIP piles and slurry walls is not so easy as that of the ready made PC(prestressed concrete) piles, it is necessary to get the information on the integrity of the concrete of the foundation. The depth estimation of foundations whose depths are unknown is also very important in repair and reinforcement works or in safety inspection and assessment to the big structures. The cross-hole sonic logging(CSL) system and the single channel reflection seismic measurement system were developed to test the integrity of pile. The former is well applied to CIP structures, while the later to all kinds of piles with less accurate result compared to that of CSL. To estimate the depth of the deep foundations, parallel seismics, borehole RADAR, and borehole magnetics can be used.

  • PDF

Physical Properties of and Joint Distribution Within the Cheongju Granitic Mass, as Assessed from Drill-core and Geophysical Well-logging Data (시추 및 물리검층자료의 상관해석을 통한 청주화강암체의 물성 정보 및 절리 분포)

  • Lee, Sun-Jung;Lee, Cheol-Hee;Jang, Hyung-Su;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.21 no.1
    • /
    • pp.15-24
    • /
    • 2011
  • To clarify the distribution of joints and fracture zones in the Cheongju granitic mass, we analyzed drill-core and geophysical well-logging data obtained at two boreholes located 30 m from each other. Lithological properties were investigated from the drill-core data and the samples were classified based on the rock mass rating (RMR) and on rock quality designation (RQD). Subsurface discontinuities within soft and hard rocks were examined by geophysical well-logging and cross-hole seismic tomography. The velocity structures constructed from seismic tomography are well correlated with the profile of bedrock depth, previously mapped from a seismic refraction survey. Dynamic elastic moduli, obtained from full waveform sonic and ${\gamma}-{\gamma}$ logging, were interrelated with P-wave velocities to investigate the dynamic properties of the rock mass. Compared with the correlation graph between elastic moduli and velocities for hard rock at borehole BH-1, the correlation points for BH-2 data showed a wide scatter. These scattered points reflect the greater abundance of joints and fractures near borehole BH-2. This interpretation is supported by observations by acoustic televiewer (ATV) and optical televiewer (OTV) image loggings.

이산 웨이브릿 변환을 이용한 탄성파 주시결정

  • Kim, Jin-Hu;Lee, Sang-Hwa
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.2
    • /
    • pp.113-120
    • /
    • 2001
  • The discrete wavelet transform(DWT) has potential as a tool for supplying discriminatory attributes with which to distinguish seismic events. The wavelet transform has the great advantage over the Fourier transform in being able to localize changes. In this study, a discrete wavelet transform is applied to seismic traces for identifying seismic events and picking of arrival times for first breaks and S-wave arrivals. The precise determination of arrival times can greatly improve the quality of a number of geophysical studies, such as velocity analysis, refraction seismic survey, seismic tomography, down-hole and cross-hole survey, and sonic logging, etc. provide precise determination of seismic velocities. Tests for picking of P- and S- wave arrival times with the wavelet transform method is conducted with synthetic seismic traces which have or do not have noises. The results show that this picking algorithm can be successfully applied to noisy traces. The first arrival can be precisely determined with the field data, too.

  • PDF

Geotomography Applied for the Integrity Test of Cast-in-place Piles (현장타설콘크리트말뚝의 건전도 평가를 위한 geotomography의 적용 연구)

  • Lee Jae-Kyung;Park Jong-Nam
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.5-12
    • /
    • 2005
  • Recently, geophysical prospecting methods have played very important roles in civil and environmental engineering problems. Technical advances in geophysical instruments and computer system made it possible to get underground images with very high resolution far purposes to resolve those problems. It was possible partly due to ever increasing demand for development of technologies needed to precisely detect polluted areas and prevent ground-related accidents. Based on the same demand, integrity tests of cast-in place piles draw more attention and development of accurate test procedures is required. Ultrasonic methods is one of most advanced non-destructive procedures. In the paper, a geotomography method is employed for the cast-in place pile integrity test using ultrasonic waves. The image of pile interior is scanned and scrutinized far better and more accurate decision in the cast-in place pile integrity. In this study, we firstly examined the accuracy fur tomography program with idealized synthetic models built in water tank: their position and size were changed in the tank and each case was studied. In the next stage, real concrete pile models were fabricated and images of anomaly areas inside the pile were scanned to successfully locate those areas.