• 제목/요약/키워드: Cross cylinder

검색결과 233건 처리시간 1.305초

Difference of tension on mooring line by buoy type (부이 형상에 따른 부이줄 장력의 차이)

  • Lee, Gun-Ho;Kim, In-Ok;Cha, Bong-Jin;Jung, Seong-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • 제50권3호
    • /
    • pp.233-243
    • /
    • 2014
  • The difference of mooring tension by type of buoy was investigated in the circulating water channel and the wave tank for deducting the most stable buoy from the current and the wave condition. 5 types of buoy made up of short cylinder laid vertically (CL-V), short cylinder laid horizontally (CL-H), capsule (CS), sphere (SP) and long cylinder (CL-L) were used for experiments. A mooring line and a weight were connected with each buoy. A tensile gauge was installed between a mooring line and a weight. All buoy's mooring tension was measured at the same time for the wave test with periods of 1.5~3.0 sec and wave heights of 0.1~0.3 m, and the current test with flow speeds of 0.2~1.0 m/sec. As a result, the order of tension value in the wave test was CL-H > CL-V > SP > CS > CL-L. In the current test CL-V and CL-H were recorded in the largest tension value, whereas SP has the smallest tension value. So it seems that SP buoy is the most effective in the location affected by fast current. CS is predicted to be suitable for a location that influence of wave is important more than that of current if practical use in the field is considered. And it was found that the difference of mooring tension among buoys in wave is related to the product of the cross sectional area and the drag coefficient for the buoy's bottom side in high wave height. The factor for the current condition was not found. But it was supposed to be related to complex factors like a dimension and a shape by buoy's posture to flow.

Cross-sectional Cell Anatomy and Physiological Growth Responses of Cells in Root Growth Zones of Two Tall Fescue Genotypes at Two Nitrogen Levels (톨페스큐 뿌리생장부위의 횡적 해부구조 및 세포생장의 생리적 반응에 대한 질소효과)

  • Beom Heon, Song;Curtis J, Nelson
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • 제40권3호
    • /
    • pp.297-307
    • /
    • 1995
  • Anatomical and physiological studies of sink tissues are required for better understanding the biological plant growth system and energy metabolism Anatomy of root growth zones of two genotypes of tall fescue (Festuca arundinacea Schreb.) receiving 50 or 200 ppm N were determined, Cross-sectional anatomy and cells responses of root growth zones were observed and examined. Rapid radial root expansion occurred within the first 1.0 mm from root apex, and then increased gradually for both genotypes and N levels. Another increase in diameter occurred at high N after cell elongation slowed near 3.0 mm. Area of the central cylinder cell increased rapidly near the root apex. However, it then decreased again about 1.0 to 1.5 mm from the apex, perhaps because of pressure from the rapid increase of root diameter due largely to an increasing proportion of cortex and epidermis or hypodermis in the distal portion of the root growth zone. Root area from the apical initial to 6.0 mm distal consisted of 10 to 18% epidermis or exodermis, 67 to 79% cortex, and 10 to 22% vascular cylinder cells containing cambium cells (6 to 20%) and xylem cells (0.8 to 2.5%). These data indicate that N application affects root growth radially by increasing mainly cortex cell area, with less effect on epidermis and central cylinder cells.

  • PDF

Modified Finite Volume Time Domain Method for Efficient Prediction of Radar Cross Section at High Frequencies

  • Chatterjee, Avijit;Myong, Rho-Shin
    • Journal of electromagnetic engineering and science
    • /
    • 제8권3호
    • /
    • pp.100-109
    • /
    • 2008
  • The finite volume time domain(FVTD) technique faces serious limitations in simulating electromagnetic scattering at high frequencies due to requirements related to discretization. A modified FVTD method is proposed for electrically large, perfectly conducting scatterers by partially incorporating a time-domain physical optics(PO) approximation for the surface current. Dominant specular returns in the modified FVTD method are modeled using a PO approximation of the surface current allowing for a much coarser discretization at high electrical sizes compared to the original FVTD scheme. This coarse discretization can be based on the minimum surface resolution required for a satisfactory numerical evaluation of the PO integral for the scattered far-field. Non-uniform discretization and spatial accuracy can also be used in the context of the modified FVTD method. The modified FVTD method is aimed at simulating electromagnetic scattering from geometries containing long smooth illuminated sections with respect to the incident wave. The computational efficiency of the modified FVTD method for higher electrical sizes are shown by solving two-dimensional test cases involving electromagnetic scattering from a circular cylinder and a symmetric airfoil.

A Study on the Roll Damping of Two-Dimensional Cylinders (2차원 주상체의 횡요감쇠에 대한 연구)

  • Yuck Rae H.;Lee Dong H.;Choi Hang S.;Jin Young M.;Bang Chang S.
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.197-200
    • /
    • 2002
  • In this paper, roll damping coefficients for a non-conventional cross section, which is herein named as 'step' model, are investigated numerically and experimentally. Experiments are extensively carried out to estimate the roll damping coefficients. Numerical estimations are also made with the help of numerical codes. For convenience, the roll damping is divided into wave-making component and viscous component. The wave-making component is determined using a potential code and the viscous component using a viscous flow code, in which the fluid domain is taken as unbounded. In order to validate the present approach, a typical cross section with bilge is considered and our results are compared with published data. The comparison shows a good agreement qualitatively. For the step model, numerical results are compared well with experimental data besides some quantitative discrepancies at a certain range of frequency. It is thought that the discrepancy might be caused by the ignorance of the free surface in viscous computations. It is found in the case of the step model that not only the viscous component but also the wave component increases considerably compared to the section with bilge.

  • PDF

A Split Die Design for Forging of Hexagonal Bolt Head (육각볼트 헤드 단조를 위한 분할금형설계)

  • Qiu, Yuangen;Cho, Hae Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제19권5호
    • /
    • pp.91-97
    • /
    • 2020
  • A split-die design for the cold forging of symmetric parts such as those having a hexagonal cross-section is presented in this paper. Parts with a hexagonal cross-section, such as bolt heads and nuts, should be forged with a die that has a hexagonal-shaped hole. A split type die is required to mitigate the buildup of stress concentrations located at the corners of the hexagonal hole. Generally, the insert of a hexagonal die is made by cutting each corner of a cylinder using a hexagonal hole and then combined with the die and shrink-fitted. However, split dies face problems when extruding material at the corners of the hexagonal split die. To address this problem, two types of split dies were evaluated: rounded hexagonal dies and angular hexagonal dies. The effects of the pre-stress ring on the dies were compared and analyzed and results show that using the angular split hexagonal die can extend the lifetime of forging dies.

A Fundamental Study of a Variable Critical Nozzle Flow (가변형 임계 노즐유동에 관한 기초적 연구)

  • Kim, Jae-Hyung;Kim, Heuy-Dong;Park, Kyung-Am
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.484-489
    • /
    • 2003
  • The mass flow rate of gas flow through critical nozzle depends on the nozzle supply conditions and the cross-sectional area at the nozzle throat. In order that the critical nozzle can be operated at a wide range of supply conditions, the nozzle throat diameter should be controlled to change the flow passage area. This can be achieved by means of a variable critical nozzle. In the present study, both experimental and computational works are performed to develop variable critical nozzle. A cone-cylinder with a diameter of d is inserted into conventional critical nozzle. It can move both upstream and downstream, thereby changing the cross-sectional area of the nozzle throat. Computational work using the axisymmetric, compressible Navier-Stokes equations is carried out to simulate the variable critical nozzle flow. An experiment is performed to measure the mass flow rate through variable critical nozzle. The present computational results are in close agreement with measured ones. The boundary layer displacement and momentum thickness are given as a function of Reynolds number. An empirical equation is obtained to predict the discharge coefficient of variable critical nozzle.

  • PDF

Creative Design of Large-Angle Pin Type Load Cell for the Overload Limiter of a Movable Crane (이동식크레인의 과부하방지장치용 광각도 핀형 로드셀의 창의적 설계)

  • Han, Dong Seop;Ha, Jeong Min;Han, Geun Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제9권1호
    • /
    • pp.35-41
    • /
    • 2010
  • An overload limiter is used to prevent its overturning accident during an operation of a movable crane. Recently the indirect measuring method, which measures hoisting load and overturning moment of overload limiter, demands instead of the existing method, which measures only hoisting load. The indirectly measuring method is how to conduct the hoisting load and overturning moment as measuring the load of hydraulic cylinder for a luffing driving of boom. So we need to develop the multi-angular pin type load cell with the measuring angle of ${\pm}10$ degree instead of the existing load cell with the measuring angle of ${\pm}2$ degree. In this study the finite element analysis is conducted to evaluate the effect of the aspect ratio of measuring cross section on the measuring limit of the load cell to develop the many-angular pin type load cell. For this investigation, the aspect ratio of measuring cross section and load applying angle were adopted as design parameters and the stresses of measuring part were evaluated for each parameter.

Computation of Radar Cross Section of Ship's Structure using a Physical Optics Method (물리 광학법을 이용한 함정구조물의 레이다 반사면적 계산)

  • Sam-Wook Choi;Sung-Youn Boo
    • Journal of the Society of Naval Architects of Korea
    • /
    • 제37권4호
    • /
    • pp.82-91
    • /
    • 2000
  • In this study, a numerical scheme based on physical optics method is developed to predict RCS of perfectly conducting body. The scheme is verified through the comparisons of numerical values of cylinder and sphere with analytical ones. It is also applied to compute RCS of a fast naval craft. Major reflection of this ship at threat angle of 0 degrees is found to be due to superstructure and stern part of main hull. In order to investigate the shaping effects on the ship. inclination angles of the stern of main hull and superstructure are set to 12 degrees. The RCS of the ship with shaping is proven to be much reduced in comparison with one without shaping.

  • PDF

Numerical Investigation of Effect of Opening Pattern of Flow Control Valve on Underwater Discharge System using Linear Pump (유량제어밸브 개방형태가 선형펌프 방식 수중사출 시스템에 미치는 영향에 관한 수치적 연구)

  • Lee, Sunjoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • 제22권2호
    • /
    • pp.255-265
    • /
    • 2019
  • In the present study, the effect of opening patterns of a flow control valve on underwater discharge systems using a linear pump was investigated numerically. For that, a improved mathematical model was developed. The improvement is to separate a middle tank from a water cylinder because the cross-section area of the inlet of the middle tank is an important parameter. To validate the improved model, calculation results were compared with a previous study. The results showed that $2^{nd}$ order or more polynomial opening patterns had an advantage over ramp opening patterns. Higher an order of polynomial resulted in wider operating limits. An escape velocity and a maximum acceleration of underwater vehicle were affected by time derivative of the cross-section area of the flow control valve. Besides, as a velocity profile of the vehicle got closer to linearity, the escape velocity got faster and the maximum acceleration got smaller. And velocities of the vehicle and piston had similar variation trend.

Simplified analytical solution of tunnel cross section under oblique incident SH wave in layered ground

  • Huifang Li;Mi Zhao;Jingqi Huang;Weizhang Liao;Chao Ma
    • Earthquakes and Structures
    • /
    • 제24권1호
    • /
    • pp.65-79
    • /
    • 2023
  • A simplified analytical solution for seismic response of tunnel cross section in horizontally layered ground subjected to oblique incidence of SH wave is deduced in this paper. The proposed analytical solution consists of two main steps: free-field response in layered field and tunnel response. The free field responses of the layered ground are obtained by one-dimensional finite element method in time domain. The tunnel lining is treated as a thick-wall cylinder to calculate the tunnel response, which subject to free field stress. The analytical solutions are verified by comparing with the dynamic numerical results of two-dimensional ground-lining interaction analysis under earthquake in some common situations, which have a good agreement. Then, the appropriate range of the proposed analytical solution is analyzed, considering the height of the layered ground, the wavelength and incident angle of SH wave. Finally, by using the analytical solutions, the effects of the ground material, burial depth of the tunnel, and lining thickness and the slippage effect at the ground-lining interface on the seismic response of tunnels are investigated. The proposed solution could serve as a useful tool for seismic analysis and design of tunnels in layered ground.