• Title/Summary/Keyword: Cross Section Taper

Search Result 50, Processing Time 0.03 seconds

Vibration Analysis of a Rotating Blade Considering Pre-twist Angle, Cross Section Taper and a Concentrated Mass (초기 비틀림 각과 단면 테이퍼 그리고 집중질량을 갖는 회전하는 블레이드의 진동해석)

  • Kim, Hyung Yung;Yoo, Hong Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.338-346
    • /
    • 2013
  • Equations of motion of a rotating blade considering pre-twist angle, cross section taper and a concentrated mass are derived using the hybrid deformation variable modeling method. For the modeling of a concentrated mass which is located at an arbitrary position of the blade, a Dirac delta function is employed for the mass density function. The final equations for the vibration analysis are transformed into a dimensionless form using several dimensionless parameters. The effects of the dimensionless parameters on the vibration characteristics of the rotating blade are investigated through numerical analysis.

Dynamic Characteristics of Composite Thin-Walled Beams with a Chord wise Asymmetric Cross-Section: I. Single-Cell (시위 방향 비대칭 단면의 복합재료 박벽보의 동특성 연구: I. 단일-셀)

  • Kim, Keun-Taek
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.6
    • /
    • pp.41-49
    • /
    • 2018
  • In this study, the theoretical dynamic characteristics of a thin-walled composite beam with a single-cell of chordwise asymmetric cross-section was studied. Mathematical modeling was done by considering the transverse shear effects, the warping restraint effects, the constant taper ratio in the longitudinal direction of the beam, and the geometrical cross-section ratio. The mass coefficients, stiffness coefficients, and Eigen frequencies of the selected section were investigated. In particular, the effects of the taper ratio and cross-section ratio of the model on the Eigen frequencies were analyzed and compared when the asymmetry of the section was considered and the warping function was not corrected.

STRESS DISTRIBUTION OF THREE NITI ROTARY FILES UNDER BENDING AND TORSIONAL CONDITIONS USING 3-DIMENSIONAL FINITE ELEMENT ANALYSIS (세가지 니켈 티타늄 파일의 휨과 비틀림 조건에서의 응력 분포에 관한 3차원 유한요소 연구)

  • Kim, Tae-Oh;Lee, Chan-Joo;Kim, Byung-Min;Park, Jeong-Kil;Hur, Bock;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.4
    • /
    • pp.323-331
    • /
    • 2008
  • Flexibility and fracture properties determine the performance of NiTi rotary instruments. The purpose of this study was to evaluate how geometrical differences between three NiTi instruments affect the deformation and stress distributions under bending and torsional conditions using finite element analysis. Three NiTi files (ProFile .06 / #30, F3 of ProTaper and ProTaper Universal) were scanned using a Micro-CT. The obtained structural geometries were meshed with linear, eight-noded hexahedral elements. The mechanical behavior (deformation and von Mises equivalent stress) of the three endodontic instruments were analyzed under four bending and rotational conditions using ABAQUS finite element analysis software. The nonlinear mechanical behavior of the NiTi was taken into account. The U-shaped cross sectional geometry of ProFile showed the highest flexibility of the three file models. The ProTaper, which has a convex triangular cross-section, was the most stiff file model. For the same deflection, the ProTaper required more force to reach the same deflection as the other models, and needed more torque than other models for the same amount of rotation. The highest von Mises stress value was found at the groove area in the cross-section of the ProTaper Universal. Under torsion, all files showed highest stresses at their groove area. The ProFile showed highest von Mises stress value under the same torsional moment while the ProTaper Universal showed the highest value under same rotational angle.

Static stability analysis of axially functionally graded tapered micro columns with different boundary conditions

  • Akgoz, Bekir
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.133-142
    • /
    • 2019
  • In the present study, microstructure-dependent static stability analysis of inhomogeneous tapered micro-columns is performed. It is considered that the micro column is made of functionally graded materials and has a variable cross-section. The material and geometrical properties of micro column vary continuously throughout the axial direction. Euler-Bernoulli beam and modified couple stress theories are used to model the nonhomogeneous micro column with variable cross section. Rayleigh-Ritz solution method is implemented to obtain the critical buckling loads for various parameters. A detailed parametric study is performed to examine the influences of taper ratio, material gradation, length scale parameter, and boundary conditions. The validity of the present results is demonstrated by comparing them with some related results available in the literature. It can be emphasized that the size-dependency on the critical buckling loads is more prominent for bigger length scale parameter-to-thickness ratio and changes in the material gradation and taper ratio affect significantly the values of critical buckling loads.

Dynamic Characteristics of Composite Thin-Walled Beams with a Chord-Wise Asymmetric Cross-Section: II. Multi-Cell (시위 방향 비대칭 단면의 복합재료 박벽보의 동특성 연구: II. 다중-셀)

  • Kim, Keun-Taek
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.2
    • /
    • pp.51-59
    • /
    • 2019
  • Subsequently, Part I [1], which was about the single-cell model, a composite thin-walled beam with a multi-cell of chord-wise asymmetric cross-section, was selected in this study. Moreover, the theoretical dynamic characteristics of the model were analyzed. For this analysis, mathematical modeling was performed by considering the warping restraint effects, transverse shear effects, taper ratio and cross-section ratio. Similar to part I, the mass, stiffness coefficients and Eigen frequencies of the multi-cell section considered were investigated. In particular, the comparison between the multi-cell and single-cell sections and the effects of the cross-section ratio and taper ratio of the model on the Eigen frequencies were analyzed. However, the results compared when the asymmetry of the section was considered and warping function were not corrected.

Vibration Analysis of Rotating Blades with the Cross Section Taper Considering the Pre-twist Angle and the Setting Angle (초기 비틀림각 및 장착 각의 영향을 고려한 단면 테이퍼진 회전 블레이드의 진동해석)

  • Lee, Jun-Hee;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.10-21
    • /
    • 2010
  • Equations of chordwise and flapwise bending motions for the vibration analysis of rotating pre-twisted blades having tapered cross section and setting angle are derived by using hybrid deformation variable modeling. The two motions are couples to each other due to the pre-twisted angle of the beam cross section. The derived equations are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters on the modal characteristics of rotating pre-twisted blades having tapered cross section and orientation angle are investigated. The eigenvalue loci veering phenomena are also investigated and discussed in this work.

Vibration analysis of rotating blades considering the cross section taper, the pre-twist angle, and the setting angle (단면 테이퍼, 초기 비틀림각, 그리고 장착 각의 영향을 고려한 회전 블레이드의 진동해석)

  • Lee, Jun-Hee;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.288-295
    • /
    • 2009
  • Equations of chordwise and flapwise bending motions for the vibration analysis of rotating pre-twisted blades having tapered cross section and orientation angle are derived by using hybrid deformation variable modeling. The two motions are couples to each other due to the pre-twisted angle of the beam cross section. The derived equations are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters on the modal characteristics of rotating pre-twisted blades having tapered cross section and orientation angle are investigated. The eigenvalue loci veering phenomena is also investigated and discussed in this work.

  • PDF

Development of the Wire EDM CAM System Considering a Variab1e Taper Wire-cut and an Unmanned Wire EDM During the Night (상하이형상 및 야간 무인가공을 고려한 와이어 EDM 전용 CAM 시스템 개발)

  • 유우식;정회민
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.3
    • /
    • pp.206-214
    • /
    • 2001
  • This paper describes the wire EDM (Electric Discharge Machining) CAM system considering a variable taper wire-cut and an unmanned wire EDM during the night. Wire EDM is applicable to all materials that are fairly good electrical conductors, including metals, alloys and most carbide. Thus it provides a relatively simple method for making holes of any desired cross section in materials that are too hard or brittle to be machined by most other methods. In this paper we classify variable taper wire-cut machining patterns and variable taper wire-cut geometries. Also we determine unmanned wire EDM patterns fur the productivity of wire EDM industry. Developed system consists of two modules: 1) Variable taper wire EDM module guarantees the length ratio machining function, the parametric ratio machining function and the marking function. 2) Unmanned wire EDM module guarantees the automatic wire EDM during the night. The proposed system has been tested in the fields and found to be a useful system.

  • PDF

The Optimum Shape of Taper HTS Current Lead Having Partial Current Sharing Region (일부 전류분류 영역을 갖는 테이퍼 형상 전류도입선의 최적 형상에 대한 연구)

  • 허광수;설승윤
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.185-189
    • /
    • 2003
  • The purpose of this study is to obtain the optimal operating condition of conduction cooled taper shape high-temperature superconductor (HTS) current lead operated in current sharing mode. In our previous study, we discovered that the optimal operating condition of constant cross-section area HTS current lead is in the current sharing state, and in optimal condition, the temperature gradient at warm end is not zero. The analysis result of taper HTS current lead is quiet similar to the constant area HTS current lead. The minimum dissipation of taper HTS current lead is not influenced by taper angle, however the optimal operation condition is varied with taper angle.

  • PDF

Applying Nonlinear Mixed-effects Models to Taper Equations: A Case Study of Pinus densiflora in Gangwon Province, Republic of Korea (비선형 혼합효과 모형의 수간곡선 적용: 강원지방 소나무를 대상으로)

  • Shin, Joong-Hoon;Han, Hee;Ko, Chi-Ung;Kang, Jin-Taek;Kim, Young-Hwan
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.1
    • /
    • pp.136-149
    • /
    • 2022
  • In this study, the performance of a nonlinear mixed-effects (NLME) model used to estimate the stem taper of Pinus densiflora in Gangwon Province was compared with that of a nonlinear fixed-effects (NLFE) model using several performance measures. For the diameters of whole tree stems, the NLME model improved on the performance of the NLFE model by 26.4%, 42.9%, 43.1%, and 0.9% in terms of BIAS, MAB, RMSE, and FI, respectively. For the cross-section areas of whole tree stems, the NLME model improved on the performance of the NLFE model by 67.7%, 44.7%, 45.8%, and 1.0% in terms of BIAS, MAB, RMSE, and FI, respectively. Based on the analysis of 12 relative height classes of tree stems, stem taper estimation performance was also reasonably improved by the NLME model, which showed better MAB, RMSE, and FI at every relative height class compared with those of the NLFE model. In some classes, the NLFE model had better BIAS than the NLME model (stem diameter: 0.05, 0.2, 0.3, and 0.8; stem cross-section area: 0.05, 0.3, 0.5, 0.6, and 1.0). However, the NLME model enhanced the performance of stem diameter and cross-section area estimations at the lowest stem part (0.2 m from the ground). Improvements for stem diameter in terms of BIAS, MAB, RMSE, and FI were 84.2%, 69.8%, 68.7%, and 3.1%, respectively. For stem cross-section areas, the improvements in BIAS, MAB, RMSE, and FI were 98.5%, 70.1%, 68.7%, and 3.1%, respectively. The cross-section area at 0.2 m from the ground occupied 22.7% of total cross-section area. Improvements in estimation of cross-section area at the lowest stem part indicate that stem volume estimation performance could also be enhanced. Although NLME models are more difficult to fit than NLFE models, the use of NLME models as a standard method for the estimating the parameters of stem taper equations should be considered.