• 제목/요약/키워드: Crop pathogens

검색결과 230건 처리시간 0.024초

Plant Protective and Growth Promoting Effects of Seed Endophytes in Soybean Plants

  • Jiwon Kim;Seong-Ho Ahn;Ji Sun Yang;Seonwoo Choi;Ho Won Jung;Junhyun Jeon
    • The Plant Pathology Journal
    • /
    • 제39권5호
    • /
    • pp.513-521
    • /
    • 2023
  • Seed-borne diseases reduce not only the seed germination and seedling growth but also seed quality, resulting in the significant yield loss in crop production. Plant seed harbors diverse microbes termed endophytes other than pathogens inside it. However, their roles and application to agricultures were rarely understood and explored to date. Recently, we had isolated from soybean seeds culturable endophytes exhibiting in-vitro antagonistic activities against common bacterial and fungal seed-borne pathogens. In this study, we evaluated effects of seed treatment with endophytes on plant growth and protection against the common seed-borne pathogens: four fungal pathogens (Cercospora sojina, C. kikuchii, Septoria glycines, Diaporthe eres) and two bacterial pathogens (Xanthomonas axonopodis pv. glycines, Pseudomonas syringae pv. tabaci). Our experiments showed that treatment of soybean seeds with seed endophytes clearly offer protection against seed-borne pathogens. We also found that some of the endophytes promote plant growth in addition to the disease suppression. Taken together, our results demonstrate agricultural potential of seed endophytes in crop protection.

Antifungal Activity of a Synthetic Cationic Peptide against the Plant Pathogens Colletotrichum graminicola and Three Fusarium Species

  • Johnson, Eric T.;Evans, Kervin O.;Dowd, Patrick F.
    • The Plant Pathology Journal
    • /
    • 제31권3호
    • /
    • pp.316-321
    • /
    • 2015
  • A small cationic peptide (JH8944) was tested for activity against a number of pathogens of agricultural crops. JH8944 inhibited conidium growth in most of the tested plant pathogens with a dose of $50{\mu}g/ml$, although one isolate of Fusarium oxysporum was inhibited at $5{\mu}g/ml$ of JH8944. Most conidia of Fusarium graminearum were killed within 6 hours of treatment with $50{\mu}g/ml$ of JH8944. Germinating F. graminearum conidia required $238{\mu}g/ml$ of JH8944 for 90% growth inhibition. The peptide did not cause any damage to tissues surrounding maize leaf punctures when tested at a higher concentration of $250{\mu}g/ml$ even after 3 days. Liposomes consisting of phosphatidylglycerol were susceptible to leakage after treatment with 25 and $50{\mu}g/ml$ of JH8944. These experiments suggest this peptide destroys fungal membrane integrity and could be utilized for control of crop fungal pathogens.

Evaluation of Sequential Planting Method for Screening of Durable Resistance against Rice Blast in Rice Breeding Program

  • Goh, Jaeduk;Kim, Byoung-Ryun;Shin, Dong Bum;Kang, In Jeong;Lee, Bong Choon;Kang, Hang-Won;Han, Seong-Sook
    • 식물병연구
    • /
    • 제21권1호
    • /
    • pp.20-23
    • /
    • 2015
  • A sequential planting method was developed to screen rice plants with durable resistance against rice blast in a short time, and applied for several years in Korean rice breeding program. In this study, we showed the advantages of a sequential planting method compared to other pathogenicity tests. The correlation analysis among three pathogenicity tests and other factors demonstrated that durable resistance depended on the average of diseased leaf area and the number of compatible pathogens. Significant correlations were found in the nursery test but not in the field test result. In addition, we traced changes in the pathogen population during sequential planting stages through re-isolation of the pathogen. The portion of compatible pathogens was increased during sequential planting. Through this study, we provide an effective sequential planting method and direction of durable resistance in a breeding program.

Genome-wide Association Analyses for Resistance to Phytophthora sojae and Pseudomonas amygdali pv. tabaci in Soybean

  • Hee Jin You;Ruihua Zhao;EunJee Kang;Younghyeon Kim;In Jeong Kang;Sungwoo Lee
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.186-186
    • /
    • 2022
  • Phytophthora root and stem rot (PRSR) and wildfire disease (WFD) of soybean are frequently observed in the field of South Korea. The most environmentally friendly way to control PRSR and WFD is to use soybean varieties with resistance to Phytophthora sojae (P. sojae) and Pseudomonas amygdali pv. tabaci. Plant germplasm is an important gene pool for soybean breeding and improvement. In this study, hundreds of soybean accessions were evaluated for the two pathogens, and genome-wide association analyses were conducted using 104,955 SNPs to identify resistance loci for the two pathogens. Of 193 accessions, 46 genotypes showed resistance reaction, while 143 did susceptibility for PRSP. Twenty SNPs were significantly associated with resistance to P. sojae on chromosomes (Chr.) 3 and 4. Significant SNPs on Chr.3 were located within the known Rps gene region. A region on Chr. 4 is considered as a new candidate resistance loci. For evalation of resistance to WFD, 18, 31,74,36 and 34 genotypes were counted by a scale of 1-5, respectively. Five SNP markers on Chrs 9,11,12,17 and 18 were significantly associated with resistance to P. amygdali pv. tabaci. The identified SNPs and genomic regions will provide a useful information for further researches and breeding for resistance to P. sojae and P. amygdali pv. tabaci.

  • PDF

외래침입 병원체에 의한 작물 병 발생 및 분포 (Occurrence and Distribution of Crop Diseases Caused by Invasive Alien Pathogens in Korea)

  • 조원대;홍성기;김완규;지형진;이영기;최홍수;김충희
    • 식물병연구
    • /
    • 제11권1호
    • /
    • pp.1-9
    • /
    • 2005
  • 2001년부터 2003년까지 22종의 외래 침입 벼원체들에 의한 작물의 병 발생과 분포를 조사하였다. 조사돈 22종 중 18종은 그들의 기주식물에서 병 발생이 확인되었으나 4종은 병 발생이 확인되지 않았다. 외래 유입 병원체들이 국내로 유입될 당시 학명이 검토되었고, 탄저병균을 포함한 10종의 병원균 학명이 개정되었다. 외래유입병원체들의 기주범위를 조사한 결과, 8종은 유입당시 기술된 기주 뿐만 아니라 다른 작물에서도 병 발생이 확인되었다.

Biological Control of Oomycete Soilborne Diseases Caused by Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae in Solanaceous Crops

  • Elena Volynchikova;Ki Deok Kim
    • Mycobiology
    • /
    • 제50권5호
    • /
    • pp.269-293
    • /
    • 2022
  • Oomycete pathogens that belong to the genus Phytophthora cause devastating diseases in solanaceous crops such as pepper, potato, and tobacco, resulting in crop production losses worldwide. Although the application of fungicides efficiently controls these diseases, it has been shown to trigger negative side effects such as environmental pollution, phytotoxicity, and fungicide resistance in plant pathogens. Therefore, biological control of Phytophthora-induced diseases was proposed as an environmentally sound alternative to conventional chemical control. In this review, progress on biological control of the soilborne oomycete plant pathogens, Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae, infecting pepper, potato, and tobacco is described. Bacterial (e.g., Acinetobacter, Bacillus, Chryseobacterium, Paenibacillus, Pseudomonas, and Streptomyces) and fungal (e.g., Trichoderma and arbuscular mycorrhizal fungi) agents, and yeasts (e.g., Aureobasidium, Curvibasidium, and Metschnikowia) have been reported as successful biocontrol agents of Phytophthora pathogens. These microorganisms antagonize Phytophthora spp. via antimicrobial compounds with inhibitory activities against mycelial growth, sporulation, and zoospore germination. They also trigger plant immunity-inducing systemic resistance via several pathways, resulting in enhanced defense responses in their hosts. Along with plant protection, some of the microorganisms promote plant growth, thereby enhancing their beneficial relations with host plants. Although the beneficial effects of the biocontrol microorganisms are acceptable, single applications of antagonistic microorganisms tend to lack consistent efficacy compared with chemical analogues. Therefore, strategies to improve the biocontrol performance of these prominent antagonists are also discussed in this review.

십자화과 작물 종자에서 종자전염 세균 및 바이러스 동시 검출을 위한 One-step Multiplex RT-PCR 방법 (One-step Multiplex RT-PCR Method for Simultaneous Detection of Seed Transmissible Bacterium and Virus Occurring on Brassicaceae Crop Seeds)

  • 정규식;소은희
    • 식물병연구
    • /
    • 제17권1호
    • /
    • pp.52-58
    • /
    • 2011
  • 우리나라에서 주로 재배되는 십자화과 작물(상추, 콜라비, 무, 배추, 양배추)의 종자 전염 병원균 중에서 세균성 병원균 Xanthomonns campestris pv. campestris(Xcc)와 바이러스 병원균 Lettuce Mosaic Virus(LMV)를 종자에서 동시검출하기 위한 One-step multiplex RT-PCR을 개발하였다. 각각의 병원균을 특이적으로 증폭시키는 병원균 검출용 프라이머 2종(Xcc-F/R, LMV-F/R)을 primerblast 프로그램을 이용하여 제작하였고 이들 프라이머 세트는 프라이머간 또는 병원균 cDNA간의 간섭없이 특이적으로 타겟 병원균만을 검출하였다. PCR을 이용한 병원균의 검출 최소 민감도는 1 ng이었다. 십자화과 작물중에서 유통 중인 콜라비 10품종, 상추 50품종, 무 20품종, 배추 20품종 그리고 양배추 20품종에 대한 종자 감염 병원균 검출을 위한 One-step multiplex RT-PCR 수행 결과, LMV는 전체 120품종 중에서 39품종에서 검출되었고, Xcc는 2개 품종에서 검출되었다. 그리고 50품종의 상추 종자 시료 중에 8품종의 시료에서 LMV와 Xcc가 동시 검출되었다.

땅콩에서 Macrophomina phaseolina에 의한 균핵마름병 발생 보고 (First Report of Charcoal Rot Caused by Macrophomina phaseolina on Peanut Plants in Korea)

  • 최수연;이유경;금창옥;김신화;정현정;김상민;이용훈
    • 한국균학회지
    • /
    • 제51권4호
    • /
    • pp.383-387
    • /
    • 2023
  • Peanut plants showing mild wilt were found in fields of Iksan, Korea, in August 2021. The diseased peanut plants were collected, and the causal pathogens were isolated using potato dextrose agar (PDA) medium. The isolated IS-1 strain formed white mycelia on PDA, which turned black with age. Sclerotia were produced on the PDA and barley leaves laid on water agar 7 d after incubation at 30℃. The sequences of both the internal transcribed spacer (ITS) region and calmodulin gene of IS-1 showed a 100% similarity with that of Macrophomina phaseolina. A phylogenetic tree constructed using the ITS regions of fungal pathogens causing disease in peanut plants indicated that the IS-1 stain belongs to M. phaseolina. The inoculation of IS-1 sclerotia into peanut seedlings resulted in yellowing and wilt symptoms in aboveground plants and brown to dark rots in roots 35-40 d after inoculation. Overall, the morphological characteristics, molecular identification, and pathogenicity of IS-1 indicate that the causal pathogen is M. phaseolina. This is the first report of charcoal rot caused by M. phaseolina on peanut plants in Korea. Further study is needed to develop the control measures for charcoal rot in peanut plants.

한약재 주정추출물과 그 유효성분의 식물병원균에 대한 항균활성 (Antimicrobial Activity of Ethanol Extracts from Medicinal Herbs and Its Active Compound against Plant Pathogens)

  • 양지연;류송희;임성진;최근형;박병준
    • 한국환경농학회지
    • /
    • 제35권3호
    • /
    • pp.191-201
    • /
    • 2016
  • 본 연구에서는 30종의 한약재 주정추출물을 대상으로 탄저병(Colletotrichum acutatum) 외 8종의 식물병원균에 대한 살균효과 검정을 실시하였다. 그 결과, 대추(Zizyphus jujuba) 주정추출물 및 hexane 분획물이 역병균(P. capsici), 무름병균(E. carotovorum subsp. carotovora), 세균성점무늬병균(P. syringae pv. syringae) 및 풋마름병균(R. solanacearum)에 대하여 광범위하게 살균효과를 나타내었다. 대추(Z. jujuba) hexane 분획물의 주성분을 GC/MS로 분석한 결과, eugenol(40.45%), dodecanoic acid(18.40%), β-caryophyllene(10.05%) and isoeugenol(9.85%) 임을 확인하였다. 이 중 eugenol과 isoeugenol에서 저지환 크기가 15 mm 이상인 높은 살균활성을 나타내었다. 또한 역병균(P. capsici)에 대한 균사생육억제활성과 무름병균(E. carotovorum subsp. carotovora), 세균성점무늬병균(P. syringae pv. syringae) 및 풋마름병균(R. solanacearum)에 대한 낮은 MIC 값을 확인하였다. 이로 인해 대추(Z. jujuba) 주정추출물, eugenol 및 isoeugenol은 다양한 식물병원균 방제에 이용될 수 있을 것으로 생각된다.