• 제목/요약/키워드: Crop growth monitoring

검색결과 127건 처리시간 0.026초

열영상을 이용한 작물 생장 감시 -영양분 스트레스 분석- (Plant Growth Monitoring Using Thermography -Analysis of nutrient stress-)

  • 류관희;김기영;채희연
    • Journal of Biosystems Engineering
    • /
    • 제25권4호
    • /
    • pp.293-300
    • /
    • 2000
  • Automated greenhouse production system often require crop growth monitoring involving accurate quantification of plant physiological properties. Conventional methods are usually burdensome, inaccurate, and harmful to crops. A thermal image analysis system can accomplish rapid and accurate measurements of physiological-property changes of stressed crops. In this research a thermal imaging system was used to measure the leaf-temperature changes of several crops according to nutrient stresses. Thermal images were obtained from lettuce, cucumber, and pepper plants. Plants were placed in growth chamber to provide relatively constant growth environment. Results showed that there were significant differences in the temperature of stressed plants and non-stressed plants. In a case of the both N deficiency and excess, the leaf temperatures of cucumber were $2^{\circ}C$ lower than controlled temperature. The leaf temperature of cucumber was $2^{\circ}C$ lower than controlled temperature only when it was under N excess stress. For the potassium deficiency or excess stress, the leaf temperaures of cucumber and hot pepper were $2^{\circ}C$ lower than controls, respectively. The phosphorous deficiency stress dropped the leaf temperatures of cucumber and hot pepper $2^{\circ}C$ and $1.5^{\circ}C$ below than controls. However, the leaf temperature of lettuce did not change. It was possible to detect the changes in leaf temperature by infrared thermography when subjected to nutrition stress. Since the changes in leaf temperatures were different each other for plants and kinds of stresses, however, it is necessary to add a nutrient measurement system to a plant-growth monitoring system using thermography.

  • PDF

스마트 온실 통합 모니터링 시스템 구축 (Implement of Web-based Remote Monitoring System of Smart Greenhouse)

  • 김동억;박노복;홍순중;강동현;우영회;이종원;안율균;한신희
    • 현장농수산연구지
    • /
    • 제24권4호
    • /
    • pp.53-61
    • /
    • 2022
  • 적절한 기후와 토양 조건을 조성하여 제어되는 온실에서 농작물을 재배하는 것은 중요한 연구 및 적용 과제가 되어왔다. 온실의 적절한 환경 조건은 최적의 식물 성장, 작물 수확량 향상을 위해 필요하다. 본 연구는 온도센서, 토양 센서, 작물 센서, 카메라 등 각종 센서와 장비를 연결하는 온실 IT기술을 적용하여 농작물 재배 환경과 생육 상태를 실시간으로 모니터링하는 웹 기반 원격 모니터링 시스템 구축을 목적으로 하였다. 측정항목은 기온, 상대습도, 일사량, CO2 농도, 양액 EC, pH, 배지온도, 배지 EC, 배지 수분함량, 수액 흐름, 줄기 직경, 과실 직경 등이다. 개발된 온실 모니터링 시스템은 네트워크 시스템, 센서가 부착된 데이터 수집 장치, 카메라로 구성되었다. 원격 모니터링 시스템은 서버/클라이언트 환경에서 구현되었다. 온실 환경 및 작물에 대한 정보는 데이터베이스에 저장된다. 저장된 정보 중 성장 및 환경에 대한 항목을 추출 비교하고 분석할 수 있다. 스마트 온실을 위한 통합 모니터링 시스템은 스마트 온실 관리를 위한 환경 및 작물성장을 이해하고 응용 실무에 사용될 것이다.

작물 생식 모니터링을 위한 온실환경 모니터링 시스템 구축연구 (Study on Establishment of the Greenhouse Environment Monitoring System for Crop Growth Monitoring)

  • 김원경;조병효;홍영기;최원식;김경철
    • 한국산업융합학회 논문집
    • /
    • 제25권3호
    • /
    • pp.349-356
    • /
    • 2022
  • Currently, the agricultural population in Korea indicates a decreasing and aging orientation. As the population of farm labor continues to decline, so farmers are feeling the pressure to be stable crop production. To solve the problem caused by the decreasing of farm labor, it is necessary to change over to "Digital agriculture". Digital agriculture is tools that digitally collect, store, analyze, and share electronic data and/or information in agriculture, and aims to integrate the several digital technologies into crop and livestock management and other processes in agriculture fields. In addition, digital agriculture can offer the opportunity to increase crop production, save costs for farmer. Therefore, in this study, for data-based Digital Agriculture, a greenhouse environment monitoring system for crop growth monitoring based on Node-RED, which even beginners can use easily, was developed, and the implemented system was verified in a hydroponic greenhouse. Several sensors, such as temperature, humidity, atmospheric pressure, CO2, solar radiation, were used to obtain the environmental data of the greenhouse. And the environmental data were processed and visualized using Node-RED and MariaDB installed in rule.box digital. The environment monitoring system proposed in this study was installed in a hydroponic greenhouse and obtained the environmental data for almost two weeks. As a result, it was confirmed that all environmental data were obtained without data loss from sensors. In addition, the dashboard provides the names of installed sensors, real time environmental data, and changes in the last three days for each environmental data. Therefore, it is considered that farmers will be able to easily monitor the greenhouse environment using the developed system in this study.

The Potential of Sentinel-1 SAR Parameters in Monitoring Rice Paddy Phenological Stages in Gimhae, South Korea

  • Umutoniwase, Nawally;Lee, Seung-Kuk
    • 대한원격탐사학회지
    • /
    • 제37권4호
    • /
    • pp.789-802
    • /
    • 2021
  • Synthetic Aperture Radar (SAR) at C-band is an ideal remote sensing system for crop monitoring owing to its short wavelength, which interacts with the upper parts of the crop canopy. This study evaluated the potential of dual polarimetric Sentinel-1 at C-band for monitoring rice phenology. Rice phenological variations occur in a short period. Hence, the short revisit time of Sentinel-1 SAR system can facilitate the tracking of short-term temporal morphological variations in rice crop growth. The sensitivity of SAR backscattering coefficients, backscattering ratio, and polarimetric decomposition parameters on rice phenological stages were investigated through a time-series analysis of 33 Sentinel-1 Single Look Complex images collected from 10th April to 25th October 2020 in Gimhae, South Korea. Based on the observed temporal variations in SAR parameters, we could identify and distinguish the phenological stages of the Gimhae rice growth cycle. The backscattering coefficient in VH polarisation and polarimetric decomposition parameters showed high sensitivity to rice growth. However, amongst SAR parameters estimated in this study, the VH backscattering coefficient realistically identifies all phenological stages, and its temporal variation patterns are preserved in both Sentinel-1A (S1A) and Sentinel-1B (S1B). Polarimetric decomposition parameters exhibited some offsets in successive acquisitions from S1A and S1B. Further studies with data collected from various incidence angles are crucial to determine the impact of different incidence angles on polarimetric decomposition parameters in rice paddy fields.

Use of Remotely-Sensed Data in Cotton Growth Model

  • Ko, Jong-Han;Maas, Stephan J.
    • 한국작물학회지
    • /
    • 제52권4호
    • /
    • pp.393-402
    • /
    • 2007
  • Remote sensing data can be integrated into crop models, making simulation improved. A crop model that uses remote sensing data was evaluated for its capability, which was performed through comparing three different methods of canopy measurement for cotton(Gossypium hirsutum L.). The measurement methods used were leaf area index(LAI), hand-held remotely sensed perpendicular vegetation index(PVI), and satellite remotely sensed PVI. Simulated values of cotton growth and lint yield showed reasonable agreement with the corresponding measurements when canopy measurements of LAI and hand-held remotely sensed PVI were used for model calibration. Meanwhile, simulated lint yields involving the satellite remotely sensed PVI were in rough agreement with the measured lint yields. We believe this matter could be improved by using remote sensing data obtained from finer resolution sensors. The model not only has simple input requirements but also is easy to use. It promises to expand its applicability to other regions for crop production, and to be applicable to regional crop growth monitoring and yield mapping projects.

드론 기반 단파적외(SWIR) 영상을 활용한 콩의 생장과 수분 변화 모니터링 (Spatiotemporal Monitoring of Soybean Growth and Water Status Using Drone-Based Shortwave Infrared (SWIR) Imagery)

  • 이인지;김흥민;김영민;안호용;류재현;정회정;문현동;조재일;장선웅
    • 대한원격탐사학회지
    • /
    • 제40권3호
    • /
    • pp.275-284
    • /
    • 2024
  • 농업 분야에서 농작물의 생장 변화와 수분량 파악은 매우 중요하다. 본 연구에서는 수분에 민감하게 반응하는 단파적외(Short Wavelength Infrared, SWIR) 센서를 드론에 탑재하여 콩의 생장과 수분량 변화를 관찰하였다. 콩의 생장이 활발해질 때 수분량이 증가하는 현상을 확인했으며, 관수량의 차이에 따라 식생지수와 수분지수가 다르게 감소하는 것을 확인했다. 이는 습해로 인해 콩의 생장 둔화와 수분량 감소가 나타났음을 시사한다. 본 연구는 농작물의 생산성 저하와 습해 피해 감소를 위해 콩의 생장 단계별 식생지수와 수분지수를 세밀하게 모니터링할 것을 제안한다. 이로써 습해 뿐만 아니라 가뭄과 같은 수분 변화가 농작물 생장에 미치는 악영향을 조기에 탐지하여 예방할 수 있을 것으로 판단한다. 드론 기반 SWIR 센서를 통한 수분 스트레스의 조기 진단 가능성을 제시함으로써 대규모 농작물 관리의 효율성을 높이고 수확량을 증가시켜 농업 생산에 기여할 것으로 기대된다.

Impact of Smut (Sporisorium scitamineum) on Sugarcane's Above-Ground Growth and the Determinants of the Disease Intensity in the Ethiopian Sugarcane Plantations

  • Samuel Tegene;Habtamu Terefe;Esayas Tena
    • 식물병연구
    • /
    • 제30권1호
    • /
    • pp.34-49
    • /
    • 2024
  • The development of sustainable smut management techniques requires an understanding of the impacts of smut on sugarcane growth and the relationships between smut intensity and meteorological variables, varieties, and crop types. Thus, assessments were made with the objectives to 1) determine the effect of smut on the above-ground growth of sugarcane, and 2) quantify the association of smut with weather variables, varieties and crop types. The effect of smut on above-ground growth was assessed in six fields planted with NCo 334 (wider coverage) having 6 months of age in Fincha and Metehara fields in 2021. Data on above-ground growth were taken from 20 randomly selected smut-affected and healthy stools from each field. Besides, 6 years' data (2015 to 2021) on the numbers of smut-affected stools and smut whips of 79 fields were collected. Furthermore, 10 years' (2011 to 2021) weather data were acquired from the sugar plantations. The results demonstrated reduction in the above-ground growth of sugarcane in the range of 18.39% and 73.42% due to smut. In addition, weather variables explained about 68.48% and 66.58% of the variability in the number of smut-affected stools and whips respectively. Smut intensity increased with crop types for susceptible varieties. The tight association between the smut epidemic and crop types, varieties, and weather, implied that these parameters must be carefully considered in management decisions. Continuous monitoring of smut disease, meteorological variables, varieties, and crop types in all the sugarcane plantations could be done as a part of integrated smut management in the future.

Implementation of Remote Monitoring Scenario using CDMA Short Message Service for Protected Crop Production Environment

  • Bae, Keun-Soo;Chung, Sun-Ok;Kim, Ki-Dae;Hur, Seung-Oh;Kim, Hak-Jin
    • Journal of Biosystems Engineering
    • /
    • 제36권4호
    • /
    • pp.279-284
    • /
    • 2011
  • Protected vegetable production area is greater than 26% of the total vegetable production area in Korea, and portion of protected production area is increasing for flowers and fruits. To secure stable productivity and profitability, continuous and intensive monitoring and control of protected crop production environment is critical, which is labor- and time-consuming. Failure to maintain proper environmental conditions (e.g., light, temperature, humidity) leads to significant damage to crop growth and quality, therefore farmers should visit or be present close to the production area. To overcome these problems, application of remote monitoring and control of crop production environment has been increasing. Wireless monitoring and control systems have used CDMA, internet, and smart phone communications. Levels of technology adoption are different for farmers' needs for their cropping systems. In this paper, potential of wireless remote monitoring of protected agricultural environment using CDMA SMS text messages was reported. Monitoring variables were outside weather (precipitation, wind direction and velocity, temperature, and humidity), inside ambient condition (temperature, humidity, $CO_2$ level, and light intensity), irrigation status (irrigation flow rate and pressure), and soil condition (volumetric water content and matric potential). Scenarios and data formats for environment monitoring were devised, tested, and compared. Results of this study would provide useful information for adoption of wireless remote monitoring techniques by farmers.

ANALYSIS OF WATER STRESS OF GREENHOUSE PLANTS USING THERMAL IMAGING

  • K. H. Ryu;Kim, G. Y.;H. Y. Chae
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.593-599
    • /
    • 2000
  • Accurate quantification of plant physiological properties is often necessary for optimal control of an automated greenhouse production system. Conventional crop growth monitoring systems are usually burdensome, inaccurate, and harmful to crops. A thermal image analysis system was used to accomplish rapid and accurate measurements of physiological-property changes of water-stressed crops. Thermal images were obtained from several species of plants that were placed in a growth chamber. Analyzing the images provided the pattern of temperature changes in a leaf and the amount of differences in the temperature of stressed plants and non-stressed plants.

  • PDF

열영상 정보를 이용한 온실 재배 작물의 수분 스트레스 분석 (Analysis of Water Stress of Greenhouse Crops Using Infrared Thermography)

  • 김기영;류관희;채희연
    • Journal of Biosystems Engineering
    • /
    • 제24권5호
    • /
    • pp.439-444
    • /
    • 1999
  • Automated greenhouse production systems often require crop growth monitoring involving accurate quantification of plant physiological properties. Conventional methods are usually burdensome, inaccurate, and harmful to crops. A thermal image analysis system can accomplish rapid and accurate measurements of physiological-property changes of stressed crops. In this research a thermal imaging system was used to measure the leaf-temperature changes of several crops according to water deficit. Thermal images were obtained from lettuce, cucumber, pepper, and chinese cabbage plants. Results showed that there were significant differences in the temperature of stressed plants and non-stressed plants. The temperature differences between these two group of plants were 0.7 to 3$^{\circ}C$ according to species.

  • PDF