• 제목/요약/키워드: Crop Condition

검색결과 1,239건 처리시간 0.037초

급동형태(扱胴形態)와 작물(作物)의 수분함량(水分含量)이 맥주보리의 탈곡성능(脱糓性能)에 미치는 영향(影響) (The Effects of the Drum Configuration and the Crop Moisture Content on the Threshing of Malting Barley)

  • 이승규;김성태;민영봉
    • Journal of Biosystems Engineering
    • /
    • 제7권2호
    • /
    • pp.45-56
    • /
    • 1983
  • The purpose of this experiment was to evaluate the effect of the drum structures and crop moisture contents on the performance of newly developed throw-in type axial thersher. Sachun No.2 malting barley with four different crop moisture levels was used as the testing material. Four different types of threshing drum; the cylindrical drum-equipped with teeth or rubber bars and the conical drum-equipped with teeth or rubber bars were tested. The results are summarized as follows; 1. The threshing efficiency of cylindrical drum was higher than that of the conical one, and the drum with teeth was more effective in threshing than the one with bars. However, the higher the threshing efficiency over the whole range of moisture levels and drum speeds given, the more the rapid and unexpectable variations in threshing efficiencies 2. The separation efficiency of the conical drum was decreased as drum speed was increased and was not so much influenced as crop moisture content. But in case of the cylindrical drum, the result was shown in opposite way to that of the conical one. The separation efficiency of the drum with teeth was higher than that of the drum with bars and no significant decrease in separating efficiency was found at wet crop condition. 3. Foreign matters other than grain passing through the concave sieve was decreased as crop moisture content was increased, and the purity was increased at middle range of drum speed regardless of drum types. 4. Minimum grain loss was found at 700 rpm to 800 rpm of drum speed for all types of drums. The effect of crop moisture content on total grain loss was varied with drum types. As far as the grain loss is concerned, the conical drum having teeth was not so greatly influenced by various crop moisture contents and drum speeds as compared with the other types of drum. 5. Generally, the crop moisture content has more relevant effect on the germination than the drum speed regardless of drum types. The germination percentage of grain threshed by the conical drum and the bar attached drum were higher than those of cylindrical one and teeth attached one, respectively.

  • PDF

Genotype $\times$ Environment Interaction for Yield in Sesame (Sesamum indicum L.)

  • Shim, Kang-Bo;Kang, Churl-Whan;Hwang, Chung-Dong;Pae, Suk-Bok;Choi, Kyung-Jin;Byun, Jae-Cheon;Park, Keum-Yong
    • 한국작물학회지
    • /
    • 제53권3호
    • /
    • pp.297-302
    • /
    • 2008
  • Application of genotype by environment ($G\;{\times}\;E$) interaction would be used for identifying optimum test condition of the varietal adaptation in the establishment of breeding purpose. Yield and yield components were used to perform additive main effect and multiplicative interaction (AMMI) analysis. Significant difference for $G\;{\times}\;E$ interaction were observed for all variable examined. For yield, 0.18 of total sum of squares corresponded to $G\;{\times}\;E$ interaction. Correlation analysis was carried out between genotypic scores of the first interaction principal component axis (IPCA 1) for agronomic characters. Significant correlations were observed between IPCA 1 for yield and capsule bearing stem length (CBSL), number of capsule per plant (NOC). The biplot of grain yield means for IPCA1 which accounted for 34% of the variation in total treatment sums of squares showed different reaction according to $G\;{\times}\;E$ interaction, genotypes and environments. Taegu showed relatively lower positive IPCA1 scores, and it also showed smaller coefficient variation of yield mean where it is recommendable as a optimal site for the sesame cultivar adaptation and evaluation trial. In case of variables, Yangbaek and M1 showed relatively lower IPCA1 scores, but the score direction showed opposite each other on the graph. Ansan, Miryang1, Miryang4, and Miryang6 seemed to be similar group in view of yield response against IPCA1 scores. These results will be helpful to select experimental site for sesame in Korea to minimize $G\;{\times}\;E$ interaction for the selection of promising genotype with higher stability.

Effects of Weed Interference and Starter Fertilizer on Subsequent Seed Germination and Vigour of Soybean (Glycine max [L.] Merr.)

  • Mohammadi, G.R.;Amiri, F.
    • 한국잡초학회지
    • /
    • 제32권1호
    • /
    • pp.17-24
    • /
    • 2012
  • The study was conducted to investigate the effect of weed interference and starter fertilizer on subsequent soybean seed quality at the Agricultural Research Farm and Laboratory of Razi University, Kermanshah, Iran. Two factorial experiment was laid-outon a randomized complete block design with four replications. First factor was starter fertilizer levels (0 and 25 kg $ha^{-1}$) applied in the forms of monoammonium phosphate, the second factor was different weed interference periods consisted of five initial weed-free periods (in which, plots were kept free of weeds for 0, 15, 30, 45 and 60 days after crop emergence (DAE) and then weeds were allowed to grow until harvest) and five initial weed-infested periods (in which, weeds were allowed to grow for 0, 15, 30, 45 and 60DAE, after which the plots were kept free of weeds until harvest). Full season weedy condition reduced 100-seed weight, seed germination percentage and seedling dry weight by 25.9, 13.3 and 22.5%, respectively and increased mean germination time and seed electrical conductivity by 55.8 and 24.3%, respectively as compared with full season weed-free control. However, the traits under study were not significantly influenced when field was kept free of weeds for at least 45 DAE (R1) or weedy condition was continued for less than 30 DAE (V8). There was a significant and negative correlation between weed biomass and seed weight (r = -0.93), so that when weed free condition was less than 45 DAE or weed infested period was continued for at least 30 DAE, soybean plants produced wrinkled and underdeveloped seeds with lower weights and qualities. Moreover, soybean seed quality reduction due to weed interference was more evident when starter fertilizer was applied and weeds interfered with soybean from the beginning of the growing season. Information from the present study is beneficial in soybean seed production systems and where farmers use the harvested seeds for the following planting.

Physiological responses involved in reactive oxygen species (ROS) of rice plant under alone or multi artificial stress conditions

  • Kim, Yoonha;Waqas, Muhammad;Khan, Abdul Latif;Mun, Bong-Gyu;Yun, Byung-Wook;Lee, In-Jung
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.203-203
    • /
    • 2017
  • The Earth's climate is rapidly changing because of increasing carbon dioxide content in atmosphere so, climate prediction models anticipate that earth surface temperature will rise by 3 to $5^{\circ}C$ in next 50 to 100 years. Therefore, frequency of un-expected weather events such as drought, salinity, low or high temperature and flooding etc. will be increasing worldwide. Furthermore, increased atmosphere temperature can influence pests and pathogens spread as well. Therefore, to protect enormous grain loss from unexpected weather conditions, studies related with combine stress conditions like abiotic plus biotic stress condition are really required. Thus, our research focused on physiological responses under combined abiotic and biotic stress condition in rice plant. To induce uniform stress condition, we used NaCl (100 mM) and salicylic acid (0.5 and 1.0 mM SA) as each stress a stimulator. Each artificial abiotic and biotic stress inducer was applied to hydroponically grown rice seedlings alone or together for four day. The data were collected in a time-dependent manner [1, 2, 3 and 4 day(s) after treatment (DAT)] and were matched with our anticipation that shoot length and shoot fresh weight was decreased in solo and combined abiotic and biotic stress condition. The lipid peroxidation content was significantly increased ($1.5{\pm}0.2$ to $2.7{\pm}0.1mg$ mg of $MDA\;g^{-1}FW$) in the first two days in both stress exposed plants, and showed the opposite trend ($0.5{\pm}0.01$ to $0.1{\pm}0.001mg$ of $MDA\;g^{-1}FW$) in last two days under multi stress condition. Superoxide dismutase (SOD) activity did not showed difference in only biotic stress condition (alone 0.5 and 1.0 mM SA) as compared to control however, it was significantly increased in multi stress condition or solo abiotic stress condition whereas, catalase (CAT), and ascorbate peroxidase (APX) activities were significantly decreased in solo biotic and combined abiotic and biotic condition. In particular, both enzymes activities were more decreased in multi stress condition as compared to solo biotic stress condition. The results for relative mRNA expression level of CAT and APX enzymes were in agreement with results of spectrophotometric values. Correlation value between each stress condition and phenotypic data showed that biotic stress condition showed high correlation with activity of CAT and APX whilst, abiotic stress condition revealed significant correlation with SOD activity.

  • PDF

qVDT11, a major QTL related to stable tiller formation of rice under drought stress conditions

  • Kim, Tae-Heon;Cho, Soo-Min;Han, Sang-Ik;Cho, Jun-Hyun;Kim, Kyung-Min;Lee, Jong-Hee;Song, You-Chun;Park, Dong-Soo;Oh, Myung-Gyu;Shin, Dongjin
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.91-91
    • /
    • 2017
  • Drought is the most serious abiotic stress limiting rice production. However, little progress has been made in the genetic analysis of drought tolerance, because it is a complex trait controlled by a number of genes and affected by various environmental factors. In here, we screened 218 rice genetic resources for drought tolerance at vegetative stage and selected 32 highly drought tolerant varieties in greenhouse. Under rain-fed conditions, Grain yield of Nagdong was decreased by 53.3% from 517 kg/10a to 241 kg/10a when compare to irrigation condition. By comparison, grain yield of Samgang was decreased by 23.6% from 550 kg/10a to 420 kg/10a. The variety Samgang exhibited strong drought tolerance and stable yield in rain-fed conditions and was selected for further study. To identify QTLs for drought tolerance, we examined visual drought tolerance (VDT) and relative water content (RWC) using a doubled haploid (DH) population consisted of 101 lines derived from a cross between Samgang (a drought tolerance variety) and Nagdong (a drought sensitive variety). Three QTLs for VDT were located on chromosomes 2, 6, and 11, respectively, and explained 41.8% of the total phenotypic variance. qVDT2, flanked by markers RM324 and S2016, explained 8.8% of the phenotypic variance with LOD score of 3.3 and an additive effect of -0.6. qVDT6 was flanked by S6022 and S6023 and explained 12.7% of the phenotypic variance with LOD score of 5.0 and an additive effect of -0.7. qVDT11, flanked by markers RM26765 and RM287, explained 19.9% of the phenotypic variance with LOD score of 7.1 and an additive effect of -1.0. qRWC11 was the only QTL for RWC to be identified; it was in the same locus as qVDT11. qRWC11 explained 19.6% of the phenotypic variance, with a LOD score of 4.0 and an additive effect of 9.7. To determine QTL effects on drought tolerance in rain-fed paddy conditions, seven DH lines were selected according to the number of QTLs they contained. Of the drought tolerance associated QTLs, qVDT2 and qVDT6 did not affect tiller formation, but qVDT11increased tiller number. Tiller formation was most stable when qVDT2 and qVDT11 were combined. DH lines with both of these drought tolerance associated QTLs exhibited the most stable tiller formation. These results suggest that qVDT11 is important for drought tolerance and stable tiller formation under drought stress condition in field.

  • PDF

Isolation and characterization of Bradh1 gene encoding alcohol dehydrogenase from Chinese cabbage (Brassica rapa)

  • Abdula, Sailila E.;Lee, Hye-Jung;Melgar, Reneeliza J.;Sun, Mingmao;Kang, Kwon-Kyoo;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • 제38권1호
    • /
    • pp.77-86
    • /
    • 2011
  • Alcohol dehydrogenase (E.C.1.1.1.1) is an enzyme present in higher plants involved in the anaerobic fermentation pathway that catalyzes the reduction of pyruvate to ethanol, resulting in continuous $NAD^+$ regeneration. It also plays an important role in many plant developments including tolerance to anoxia condition. Here, a cDNA clone encoding alcohol dehydrogenase (ADH) was isolated from Chinese cabbage (Brassica rapa) seedlings. The gene named Bradh1 had a total length of 1,326 bp that contains a single open reading frame of 1,140 bp. The predicted protein consists of 379 amino acid residues with a calculated molecular mass of 41.17 kDa. Expression pattern analysis revealed a tissue-specific expressing gene in different tissues and strongly expressed in the shoot, roots and seeds of Chinese cabbage. Agrobacterium transformation of full-length cDNA Bradh1 into rice Gopumbyeo showed high efficiency. Furthermore, induction of ADH in transgenic rice enhanced tolerance to anaerobiosis stresses and elevated mRNA transcripts. The overexpression of Bradh1 in rice increases germination under anaerobiosis stresses, implying the possibility of developing new varieties suited for direct seeding or flood-prone rice field.

Antioxidant capacity in seedling of colored-grain wheat under water deficit condition

  • Kim, Dae Yeon;Hong, Min Jeong;Jung, Woo Joo;Seo, Yong Weon
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.140-140
    • /
    • 2017
  • Nutritious and functional foods from crop have received great attention in recent years. Colored-grain wheat contains high phenolic compound and a large number of flavonoid. The anthocyanin and polyphenolic synthesis and accumulation is generally stimulated in response to biotic or abiotic stresses. Here, we analyzed genome wide transcripts in seedling of colored-grain wheat response to ABA and PEG treatment. About 900 and 1500 transcripts (p-value < 0.05) from ABA and PEG treatment were aligned to IWGSC1+popseq DB which is composed of over 110,000 transcripts including 100,934 coding genes. NR protein sequences of Poaceae from NCBI and protein sequence of transcription factors originated from 83 species in plant transcription factor database v3.0 were used for annotation of putative transcripts. Gene ontology analysis were conducted and KEGG mapping was performed to show expression pattern of biosynthesis genes related in flavonoid, isoflavonoid, flavons and anthocyanin biopathway. DroughtDB (http://pgsb.helmholtz-muenchen.de/droughtdb/) was used for detection of DEGs to explain that physiological and molecular drought avoidance by drought tolerance mechanisms. Drought response pathway, such as ABA signaling, water and ion channels, detoxification signaling, enzymes of osmolyte biosynthesis, phospholipid metabolism, signal transduction, and transcription factors related DEGs were selected to explain response mechanism under water deficit condition. Anthocyanin, phenol compound, and DPPH radical scavenging activity were measured and antioxidant activity enzyme assays were conducted to show biochemical adaptation under water deficit condition. Several MYB and bHLH transcription factors were up-regulated in both ABA and PEG treated condition, which means highly expressed MYB and bHLH transcription factors enhanced the expression of genes related in the biosynthesis pathways of flavonoids, such as anthocyanin and dihydroflavonols in colored wheat seedlings. Subsequently, the accumulation of total anthocyanin and phenol contents were observed in colored wheat seedlings, and antioxidant capacity was promoted by upregulation of genes involved in maintaining redox state and activation of antioxidant scavengers, such as CAT, APX, POD, and SOD in colored wheat seedlings under water deficit condition. This work may provide valuable and basic information for further investigation of the molecular responses of colored-grain wheat to water deficit stress and for further gene-based studies.

  • PDF

토양수분모형을 이용한 주요 밭작물의 미래 가뭄 전망 -전라남도 지역을 중심으로- (Climate Change Impacts on Agricultural Drought for Major Upland Crops using Soil Moisture Model -Focused on the Jeollanam-do-)

  • 홍은미;남원호;최진용
    • 한국농공학회논문집
    • /
    • 제57권3호
    • /
    • pp.65-76
    • /
    • 2015
  • Estimating water requirements for upland crops are characterized by standing soil moisture condition during the entire crop growth period. However, scarce rainfall and intermittent dry spells often cause soil moisture depletion resulting in unsaturated condition in the fields. Changes in rainfall patterns due to climate change have significant influence on the increasing the occurrence of extreme soil moisture depletion. Therefore, it is necessary to evaluate agricultural drought for upland crop water planning and management in the context of climate change. The objective of this study is to predict the impacts of climate change on agricultural drought for upland crops and changes in the temporal trends of drought characteristics. First, the changes in crop evapotranspiration and soil moisture in the six upland crops, such as Soybeans, Maize, Potatoes, Red Peppers, Chinese Cabbage (spring and fall) were analyzed by applying the soil moisture model from commonly available crop and soil characteristics and climate data, and were analyzed for the past 30 years (1981-2010), and Representative Concentration Pathways (RCP) climate change scenarios (2011-2100). Second, the changes on the temporal trends of drought characteristics were performed using run theory, which was used to compare drought duration, severity, and magnitude to allow for quantitative evaluations under past and future climate conditions.

Water logging tolerance of Indonesia chili pepper

  • Higashi, Airi;Suwignyo, Rujito Agus;Sakagami, Jun-Ichi;Yabuta, Shin
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.281-281
    • /
    • 2017
  • Recently, global warming by greenhouse gas effect is getting danger and danger for human life and agriculture at present. In Indonesia, according to heavy rain in the agriculture land is often covered by excess water in result crop growth would be affected negative. This water stress triggers roots failure in anaerobic condition for upland crop because of limiting roots respiration. Chili pepper grows in upland sometimes in touch with waterlogging due to rainfall and /or over flow water from river in Indonesia. In this case, roots growing is inhibited by effect of shortage of oxygen at root cap. Therefore, the objective of this study is to observe the plant behavior in waterlogging using mahor local genotypes (Ferosa, Laris, Romario) in Sumatra. The experiment was kept by at 1cm depth water above the soil surface as a waterlogged treatment for ---days. As a result, waterlogging affected plant growth of chili negatively, especially for roots growth. Almost roots were getting bad and changed color for brown during waterlogging. A significant negative effect for nutrient absorption by roots was found in dry weight of all varieties during waterlogging. Dry weight of roots was decreased by 81.4% and 67.6%, and those of aerial part decreased by 74% and 67.2% compared with control in Ferosa and Romario at 1week after treatment. On the other hand, dry weight of roots was decreased only 35% in Laris. Therefore, Laris has a tolerance for waterlogging compared to with other varieties. Also, Laris in SPAD value was kept initial level during waterlogging however those of Ferosa and Romario decreased. Finally, due to impact of waterlogging, it may be the roots become failure because of less aerenchyma formation under anaerobic condition. We need confirm aerenchyma formation morphologically in the future.

  • PDF

Genetic analysis of photoblastism and mesocotyl elongation

  • Lee, Hyun-Sook;Kang, Ju-Won;Jeon, Yun-A;Ahn, Sang-Nag
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.26-26
    • /
    • 2017
  • Seed germination stimulated by light is said to be photoblastism. Photoblastism has not been reported in cereal crops, especially in the rice, but Korean weedy rice was reported to have photoblastism and longer mesocotyl than cultivar. Photoblastic weedy rice (PBR) was used to identify QTLs for photoblastism and mesocotyl length. In previous works, QTLs for photoblastism, pbr1 and pbr12 were identified on chromosomes 1 and 12 using 124 F4 lines from a cross between Ilpum and PBR using bulked segregant analysis. Two QTLs for mesocotyl elongation, qMel-1 and qMel-3 were mapped on chromosomes 1 and 3 120 F8 lines from the same cross. Of interest, the RM8260-RM246 region of pbr1 overlapped with a region of qMel-1. To know whether these two QTLs are functionally related, 110 F3 lines were developed from a cross between Ilpum and CR7124. CR7124 having photoblastism and long mesocotyl was selected from 120 F8 lines. 95 F3 lines were measured for germination rate in a light and dark condition and mesocotyl length. Mesocotyl length and germination rate in the dark condition in F3 lines showed significant correlation (r = 0.7, P < 0.0001). 95 $F_3$ lines were genotyped with RM7419 on chromosome 1. ANOVA showed that RM7419 was tightly linked to QTLs for photoblastism as well as mesocotyl length on chromosome 1 (P < 0.0001) indicating the tight linkage of two QTLs. Fine mapping of the two QTL is underway to analyze their functional relationship.

  • PDF