• Title/Summary/Keyword: Critical sized defect

Search Result 29, Processing Time 0.026 seconds

Critical Parameters to Improve the Fatigue Properties in the High Carbon Steel Wires (고 강도 극 세선의 피로 특성 향상을 위한 특정 인자 제시)

  • Yang, Y.S.;Bae, J.G.;Park, C.G.
    • Transactions of Materials Processing
    • /
    • v.17 no.2
    • /
    • pp.91-96
    • /
    • 2008
  • The governing parameters affecting the fatigue properties have been investigated experimentally in the high carbon steel wires with 0.94 wt.%C. In order to find the crucial factors, the advanced analysis techniques such as optical 3-D profiler, focused ion beam(FIB) and transmission electron microscope(TEM) were used. The two-type steel wires with different drawing strain were fabricated. The fatigue properties were measured by hunter rotating beam tester, specially designed for thin-sized steel wires. It was found that the fatigue properties of the steel wires with high drawing strain was higher than that with other wires because of low residual stress and high adhesion condition of brass coating layer.

Sensor placement strategy for high quality sensing in machine health monitoring

  • Gao, Robert X.;Wang, Changting;Sheng, Shuangwen
    • Smart Structures and Systems
    • /
    • v.1 no.2
    • /
    • pp.121-140
    • /
    • 2005
  • This paper presents a systematic investigation of the effect of sensor location on the data quality and subsequently, on the effectiveness of machine health monitoring. Based on an analysis of the signal propagation process from the defect location to the sensor, numerical simulations using finite element modeling were conducted on a bearing test bed to determine the signal strength at several representative sensor locations. The results showed that placing sensors closely to the machine component being monitored is critical to achieving high signal-to-noise ratio, thus improving the data quality. Using millimeter-sized piezoceramic plates, the obtained results were evaluated experimentally. A comparison with a set of commercial vibration sensors verified the developed structural dynamics-based sensor placement strategy. It further demonstrated that the proposed shock wave-based sensing technique provided an effective alternative to vibration measurement, while requiring less space for sensor installation.

Bone Healing Properties of Autoclaved Autogenous Bone Grafts Incorporating Recombinant Human Bone Morphogenetic Protein-2 and Comparison of Two Delivery Systems in a Segmental Rabbit Radius Defect

  • Choi, Eun Joo;Kang, Sang-Hoon;Kwon, Hyun-Jin;Cho, Sung-Won;Kim, Hyung Jun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.36 no.3
    • /
    • pp.94-102
    • /
    • 2014
  • Purpose: This study aims to validate the effect of autoclaved autogenous bone (AAB), incorporating Escherichia coli-derived recombinant human bone morphogenetic protein-2 (ErhBMP-2), on critical-sized, segmental radius defects in rabbits. Delivery systems using absorbable collagen sponge (ACS) and fibrin glue (FG) were also evaluated. Methods: Radius defects were made in 12 New Zealand white rabbits. After autoclaving, the resected bone was reinserted and fixed. The animals were classified into three groups: only AAB reinserted (group 1, control), and AAB and ErhBMP-2 inserted using an ACS (group 2) or FG (group 3) as a carrier. Animals were sacrificed six or 12 weeks after surgery. Specimens were evaluated using radiology and histology. Results: Micro-computed tomography images showed the best bony union in group 2 at six and 12 weeks after operation. Quantitative analysis showed all indices except trabecular thickness were the highest in group 2 and the lowest in group 1 at twelve weeks. Histologic results showed the greatest bony union between AAB and radial bone at twelve weeks, indicating the highest degree of engraftment. Conclusion: ErhBMP-2 increases bony healing when applied on AAB graft sites. In addition, the ACS was reconfirmed as a useful delivery system for ErhBMP-2.

USEFULNESS OF ACELLULAR DERMAL MATRIX GRAFT ON THE TISSUE REGENERATION IN RABBITS (가토에서 조직 재생 이식재로서 무세포성 진피 기질의 효용)

  • Choi, Jong-Hak;Ryu, Jae-Young;Ryu, Sun-Youl
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.2
    • /
    • pp.220-229
    • /
    • 2008
  • Purpose: The present study was aimed to examine the effect of acellular dermal matrix ($AlloDerm^{(R)}$) grafted to the experimental tissue defect on tissue regeneration. Materials and Methods: Male albino rabbits were used. Soft tissue defects were prepared in the external abdominal oblique muscle. The animals were then divided into 3 groups by the graft material used: no graft, autogenous dermis graft, and $AlloDerm^{(R)}$ graft. The healing sites were histologically examined at weeks 4 and 8 after the graft. In another series, critical sized defects with 8-mm diameter were prepared in the right and left iliac bones. The animals were then divided into 5 groups: no graft, grafted with autogenous iliac bone, $AlloDerm^{(R)}$ graft, $AlloDerm^{(R)}$ graft impregnated with rhBMP-2, and $AlloDerm^{(R)}$ graft with rhTGF-${\beta}1$. The healing sites of bone defect were investigated with radiologic densitometry and histological evaluation at weeks 4 and 8 after the graft. Results: In the soft tissue defect, normal healing was seen in the group of no graft. Inflammatory cells and foreign body reactions were observed in the group of autogenous dermis graft, and the migration of fibroblasts and the formation of vessels into the collagen fibers were observed in the group of $AlloDerm^{(R)}$ graft. In the bone defect, the site of bone defect was healed by fibrous tissues in the group of no graft. The marked radiopacity and good regeneration were seen in the group of autogenous bone graft. There remained the traces of $AlloDerm^{(R)}$ with no satisfactory results in the group of $AlloDerm^{(R)}$ graft. In the groups of the $AlloDerm^{(R)}$ graft with rhBMP-2 or rhTGF-${\beta}1$, there were numerous osteoblasts in the boundary of the adjacent bone which was closely approximated to the $AlloDerm^{(R)}$ with regeneration features. However, the fibrous capsule also remained as in the group of $AlloDerm^{(R)}$ graft, which separated the $AlloDerm^{(R)}$ and the adjacent bone. Conclusions: These results suggest that $AlloDerm^{(R)}$ can be useful to substitute the autogenous dermis in the soft tissue defect. However, it may not be useful as a bone graft material or a carrier, since the bone defect was not completely healed by the bony tissue, regardless of the presence of osteogenic factors like rhBMP-2 or rhTGF-${\beta}1$.

The effect of the freeze dried bone allograft and gel/putty type demineralized bone matrix on osseous regeneration in the rat calvarial defects (백서 두개골 결손부에서 동결건조골과 gel/putty 형 탈회골기질의 골재생효과)

  • Kim, Deug-Han;Hong, Ji-Youn;Pang, Eun-Kyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.3
    • /
    • pp.349-358
    • /
    • 2009
  • Purpose: This study was aimed to evaluate the effect of the Freeze Dried Bone Allograft and Demineralized Bone Matrix on osseous regeneration in the rat calvarial defects. Methods: Eight mm critical-sized calvarial defects were created in the 80 male Sprague-Dawley rats. The animals were divided into 4 groups of 20 animals each. The defects were treated with Freeze Dried Bone Allograft($SureOss^{TM}$), Demineralized Bone Matrix($ExFuse^{TM}$ Gel, $ExFuse^{TM}$ Putty), or were left untreated for sham-surgery control and were evaluated by histologic and histomorphometric parameters following a 2 and 8 week healing intervals. Statistical analysis was done between each groups and time intervals with ANOVA and paired t-test. Results: Defect closure, New bone area, Augmented area in the $SureOss^{TM}$, $ExFuse^{TM}$ Gel, $ExFuse^{TM}$ Putty groups were significantly greater than in the sham-surgery control group at each healing interval(P < 0.05). In the New bone area and Defect closure, there were no significant difference between experimental groups. Augmented area in the $ExFuse^{TM}$ Gel, $ExFuse^{TM}$ Putty groups were significantly greater than $SureOss^{TM}$ group at 2weeks(P < 0.05), however there was no significant difference at 8 weeks. Conclusions: All of $SureOss^{TM}$, $ExFuse^{TM}$ Gel, $ExFuse^{TM}$ Putty groups showed significant new bone formation and augmentation in the calvarial defect model.

Chitin-fibroin-hydroxyapatite membrane for guided bone regeneration: micro-computed tomography evaluation in a rat model

  • Baek, Young-jae;Kim, Jung-Han;Song, Jae-Min;Yoon, Sang-Yong;Kim, Hong-Sung;Shin, Sang-Hun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.14.1-14.6
    • /
    • 2016
  • Background: In guided bone regeneration (GBR) technique, many materials have been used for improving biological effectiveness by adding on membranes. The new membrane which was constructed with chitin-fibroin-hydroxyapatite (CNF/HAP) was compared with a collagen membrane (Bio-$Gide^{(R)}$) by means of micro-computed tomography. Methods: Fifty-four rats were used in this study. A critical-sized (8 mm) bony defect was created in the calvaria with a trephine bur. The CNF/HAP membrane was prepared by thermally induced phase separation. In the experimental group (n = 18), the CNF/HAP membrane was used to cover the bony defect, and in the control group (n = 18), a resorbable collagen membrane (Bio-$Gide^{(R)}$) was used. In the negative control group (n = 18), no membrane was used. In each group, six animals were euthanized at 2, 4, and 8 weeks after surgery. The specimens were analyzed using micro-CT. Results: Bone volume (BV) and bone mineral density (BMD) of the new bone showed significant difference between the negative control group and membrane groups (P < 0.05). However, between two membranes, the difference was not significant. Conclusions: The CNF/HAP membrane has significant effect on the new bone formation and has the potential to be applied for guided bone regeneration.

The Effects of Bone Regeneration of the Dermal Collagen Matrix(AlloDerm®) Graft in the Rabbit Calvarium (가토의 두개골에 이식한 진피 아교기질(AlloDerm®)이 골 재생에 미치는 효과)

  • Park, Sang Woo;Lee, Kyung Suck;Kim, Jun Sik
    • Archives of Plastic Surgery
    • /
    • v.32 no.3
    • /
    • pp.335-342
    • /
    • 2005
  • This study was undertaken to investigate possibility of the allogenic type I collagen inducing osteoinduction or osteoconduction at critical sized bone defect in the rabbit. Twenty Newzealand white rabbit, weighted from 2.8 kg to 3.5 kg, were used in this study. The skull was exposed and two bony defects were created with diameter of 10 mm. Group I(n=10), the bony defects was grafted from the other side bone. Group II(n=10), the bony defects was grafted by the allogenic type I collagen with bone morphogenic protein(BMP). Group III(n=10), the bony defects was grafted by the allogenic type I collagen only. Group IV(n=10), the bony defects was lefted with no grafts. The grafted bones and allogenic type I collagen were investigated with radiologic densitometry, histologic analysis and immunohistochemistry after 12 weeks. No major difference was observed in the gross finding between Group I, II, III, but dura mater was exposed in bony defect,the Group IV. The radiologic study demonstrated more bony opacity in the Group I, but the other groups did not demonstrate a significant difference. In the histologic study, grafted bone edge was completely consolidated with original bone in group I and new bone ingrew into the grafted allogenic type I collagen(group II, III),but there is no bone regeneration from the original bony edge in the group IV. The percent of the new bone formation by cross-sectional area was considered statistically significant at a p value of less than 0.05(p<0.05). In the immunohistochemistry study about BMP antibodies, the group IV demonstrated osteogenic activity in front of advancing original bone edge, in which the osteoblast stained strongly for BMP antibodies, but other group does not demonstrated any osteoblastic expression. There was no immunologic rejection. In conclusion, this results do not demonstrate that the allogenic type I collagen is useful for bone substitute, but the characters of the collagen, such as pliability, easy-handling, sponge-like structure, are useful in interpositional bone graft substitutes. The further evaluation of long term results about the resorption, immunologic tissue reaction, response of applied tissue growth factor to the allogenic collagen is needed.

Effect of Matrigel for Bone Graft using Hydroxyapatite/Poly $\varepsilon$-caprolactone Scaffold in a Rat Calvarial Defect Model (랫드의 두개골결손부 모델에서 HA/PCL 지지체를 사용한 골이식 시 Matrigel의 효과)

  • Kim, Se-Eun; Shim, Kyung-Mi;Kim, Seung-Eon;Choi, Seok-Hwa;Bae, Chun-Sik;Han, Ho-Jae;Kang, Seong-Soo
    • Journal of Veterinary Clinics
    • /
    • v.27 no.4
    • /
    • pp.325-329
    • /
    • 2010
  • The osteogenic potential of hydroxyapatite/poly $\varepsilon$-caprolactone composite (HA/PCL) scaffolds with matrigel was evaluated in a rat calvarial defect model. Calvarial defect formation was surgically created in Sprague Dawley rats (n = 18). HA/PCL scaffold was grafted with matrigel (M-HA/PCL group, n = 6) or without matrigel (HA/PCL group, n = 6). A critical defect group (CD group, n = 6) did not received a graft. Four weeks after surgery, bone formation was evaluated with radiography, micro computed tomography (micro CT) scanning, and histologically. No bone tissue formation was radiographically evident in the CD group. Bone tissue was radiographically evident in the HA/PCL and M-HA/PCL groups, however, there was more bone-similar opacity in the M-HA/PCL group. Micro CT analysis revealed that the bone volume of the M-HA/PCL group was higher than the HA/PCL group, however, no significant difference was found between the HA/PCL and M-HA/PCL groups. Bone mineral density in the M-HA/ PCL group was significantly higher than in the HA/PCL group (p < 0.05). Histologically, new bone was formed only from existing bone in the CD group, showing concavity without bone formation in the defect. In the HA/PCL group, new bone formation was only derived from existing bone, while in the M-HA/PCL group the largest bone formation was observed, with new bone tissue forming at the periphery of existing bone and around the HA/PCL scaffold with matrigel. The results indicate that the combination of HA/PCL scaffold with matrigel may be an effective means of enhancing bone formation in critical-sized bone defects.

EffeCt of tricalcium phosphate (TCP) as a scaffold during bone grafting using cultured periosteum-derived cells in a rat calvarial defect model (두개결손부 모델에서 배양된 골막유래세포를 이용한 골이식 시 지지체로서 TCP의 효과)

  • Shim, Kyung-Mi;Kim, Se-Eun;Kim, Jong-Choon;Bae, Chun-Sik;Choi, Seok-Hwa;Kang, Seong-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.1
    • /
    • pp.11-18
    • /
    • 2011
  • The periosteum contains multipotent cells that can differentiate into osteoblasts and chondrocytes. Cultured periosteum-derived cells (PDCs) have an osteogenic capacity. The purpose of this study was to evaluate the interaction of PDCs with bone graft biomaterial. After cell isolation from the calvarial periosteum of Sprague-Dawley rats, cultured PDCs were placed in critical-sized calvarial defects with beta-tricalcium phosphate (${\beta}$-TCP). All rats were sacrificed 8 weeks after bone graft surgery, and the bone regenerative ability of bone grafting sides was evaluated by plain radiography, micro-computed tomography (CT), and histological examination. PDCs grafted with ${\beta}$-TCP displayed enhanced calcification in the defect site, density of regenerated bone and new bone formation within the defect and its boundaries. Furthermore, these PDCs more efficiently regenerated new bone as compared to grafted ${\beta}$-TCP only. The results suggest that cultured PDCs have the potential to promote osteogenesis in bone defects.

Stepwise verification of bone regeneration using recombinant human bone morphogenetic protein-2 in rat fibula model

  • Nam, Jung-Woo;Kim, Hyung-Jun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.43 no.6
    • /
    • pp.373-387
    • /
    • 2017
  • Objectives: The purpose of this study was to introduce our three experiments on bone morphogenetic protein (BMP) and its carriers performed using the critical sized segmental defect (CSD) model in rat fibula and to investigate development of animal models and carriers for more effective bone regeneration. Materials and Methods: For the experiments, 14, 16, and 24 rats with CSDs on both fibulae were used in Experiments 1, 2, and 3, respectively. BMP-2 with absorbable collagen sponge (ACS) (Experiments 1 and 2), autoclaved autogenous bone (AAB) and fibrin glue (FG) (Experiment 3), and xenogenic bone (Experiment 2) were used in the experimental groups. Radiographic and histomorphological evaluations were performed during the follow-up period of each experiment. Results: Significant new bone formation was commonly observed in all experimental groups using BMP-2 compared to control and xenograft (porcine bone) groups. Although there was some difference based on BMP carrier, regenerated bone volume was typically reduced by remodeling after initially forming excessive bone. Conclusion: BMP-2 demonstrates excellent ability for bone regeneration because of its osteoinductivity, but efficacy can be significantly different depending on its delivery system. ACS and FG showed relatively good bone regeneration capacity, satisfying the essential conditions of localization and release-control when used as BMP carriers. AAB could not provide release-control as a BMP carrier, but its space-maintenance role was remarkable. Carriers and scaffolds that can provide sufficient support to the BMP/carrier complex are necessary for large bone defects, and AAB is thought to be able to act as an effective scaffold. The CSD model of rat fibula is simple and useful for initial estimate of bone regeneration by agents including BMPs.