DOI QR코드

DOI QR Code

Bone Healing Properties of Autoclaved Autogenous Bone Grafts Incorporating Recombinant Human Bone Morphogenetic Protein-2 and Comparison of Two Delivery Systems in a Segmental Rabbit Radius Defect

  • Choi, Eun Joo (Department of Oral and Maxillofacial Surgery, Yonsei University College of Dentistry) ;
  • Kang, Sang-Hoon (Department of Oral and Maxillofacial Surgery, Yonsei University College of Dentistry) ;
  • Kwon, Hyun-Jin (Department of Oral Biology, Yonsei University College of Dentistry) ;
  • Cho, Sung-Won (Department of Oral Biology, Yonsei University College of Dentistry) ;
  • Kim, Hyung Jun (Department of Oral and Maxillofacial Surgery, Yonsei University College of Dentistry)
  • Received : 2014.04.02
  • Accepted : 2014.05.14
  • Published : 2014.05.31

Abstract

Purpose: This study aims to validate the effect of autoclaved autogenous bone (AAB), incorporating Escherichia coli-derived recombinant human bone morphogenetic protein-2 (ErhBMP-2), on critical-sized, segmental radius defects in rabbits. Delivery systems using absorbable collagen sponge (ACS) and fibrin glue (FG) were also evaluated. Methods: Radius defects were made in 12 New Zealand white rabbits. After autoclaving, the resected bone was reinserted and fixed. The animals were classified into three groups: only AAB reinserted (group 1, control), and AAB and ErhBMP-2 inserted using an ACS (group 2) or FG (group 3) as a carrier. Animals were sacrificed six or 12 weeks after surgery. Specimens were evaluated using radiology and histology. Results: Micro-computed tomography images showed the best bony union in group 2 at six and 12 weeks after operation. Quantitative analysis showed all indices except trabecular thickness were the highest in group 2 and the lowest in group 1 at twelve weeks. Histologic results showed the greatest bony union between AAB and radial bone at twelve weeks, indicating the highest degree of engraftment. Conclusion: ErhBMP-2 increases bony healing when applied on AAB graft sites. In addition, the ACS was reconfirmed as a useful delivery system for ErhBMP-2.

Keywords

References

  1. Lee JG, Lee EW. Healing process of the reimplanted autoclaved autogenous mandible in adult dogs. J Korean Assoc Oral Maxillofac Surg 1993;19:514-32.
  2. Urist MR, Silverman BF, Buring K, Dubuc FL, Rosenberg JM. The bone induction principle. Clin Orthop Relat Res 1967;53:243-83.
  3. Harding RL. Replantation of the mandible in cancer surgery. Plast Reconstr Surg (1946) 1957;19:373-83. https://doi.org/10.1097/00006534-195705000-00002
  4. Harding RL. Replantation of the mandible in cancer surgery. Plast Reconstr Surg 1971;48:586-7. https://doi.org/10.1097/00006534-197112000-00012
  5. Hamaker RC. Irradiation autogenous mandibular grafts in primary reconstructions. Laryngoscope 1981;91:1031-51.
  6. Shin S, Yano H, Fukunaga T, et al. Biomechanical properties of heat-treated bone grafts. Arch Orthop Trauma Surg 2005;125:1-5. https://doi.org/10.1007/s00402-004-0746-6
  7. Zellin G. Growth factors and bone regeneration. Implications of barrier membranes. Swed Dent J Suppl 1998;129:7-65.
  8. Lee SJ. Cytokine delivery and tissue engineering. Yonsei Med J 2000;41:704-19. https://doi.org/10.3349/ymj.2000.41.6.704
  9. Garrison KR, Shemilt I, Donell S, et al. Bone morphogenetic protein (BMP) for fracture healing in adults. Cochrane Database Syst Rev 2010;(6):CD006950.
  10. Lee JB, Kim TW, Ryu SH, et al. The Use of Recombinant Human Bone Morphogenic Protein-2 (rhBMP-2) in Treatment for Cysts of the Oral and Maxillofacial Regions. J Korean Assoc Maxillofac Plast Reconstr Surg 2014;36:25-9.
  11. Kübler NR, Reuther JF, Faller G, Kirchner T, Ruppert R, Sebald W. Inductive properties of recombinant human BMP-2 produced in a bacterial expression system. Int J Oral Maxillofac Surg 1998;27:305-9. https://doi.org/10.1016/S0901-5027(05)80621-6
  12. Lee JH, Kim CS, Choi KH, et al. The induction of bone formation in rat calvarial defects and subcutaneous tissues by recombinant human BMP-2, produced in Escherichia coli. Biomaterials 2010;31:3512-9. https://doi.org/10.1016/j.biomaterials.2010.01.075
  13. Nam JW. Comparison of autoclaved autogenous bone and fibrin glue as BMP carriers for bone regeneration in a critical sized segmental defect in the rat fibula. [dissertation]. [Seoul]: Yonsei University; 2010. 67 p.
  14. Bostrom M, Lane JM, Tomin E, et al. Use of bone morphogenetic protein-2 in the rabbit ulnar nonunion model. Clin Orthop Relat Res 1996;(327):272-82.
  15. Zegzula HD, Buck DC, Brekke J, Wozney JM, Hollinger JO. Bone formation with use of rhBMP-2 (recombinant human bone morphogenetic protein-2). J Bone Joint Surg Am 1997;79:1778-90. https://doi.org/10.2106/00004623-199712000-00003
  16. Yamamoto M, Takahashi Y, Tabata Y. Enhanced bone regeneration at a segmental bone defect by controlled release of bone morphogenetic protein-2 from a biodegradable hydrogel. Tissue Eng 2006;12:1305-11. https://doi.org/10.1089/ten.2006.12.1305
  17. Huber F, Belyaev O, Huber C, Meeder P. A standard surgical protocol for a rabbit ulnar osteotomy model. Scand J Lab Anim Sci 2006;33:89-95.
  18. Gallie WE. Discussion on bone-grafting: (Abstract). Proc R Soc Med 1919;12:22-3.
  19. Böhm P, Springfeld R, Springer H. Re-implantation of autoclaved bone segments in musculoskeletal tumor surgery. Clinical experience in 9 patients followed for 1.1-8.4 years and review of the literature. Arch Orthop Trauma Surg 1998;118:57-65. https://doi.org/10.1007/s004020050312
  20. Takaoka K, Nakahara H, Yoshikawa H, Masuhara K, Tsuda T, Ono K. Ectopic bone induction on and in porous hydroxyapatite combined with collagen and bone morphogenetic protein. Clin Orthop Relat Res 1988;(234):250-4.
  21. Nakahara H, Takaoka K, Koezuka M, Sugamoto K, Tsuda T, Ono K. Periosteal bone formation elicited by partially purified bone morphogenetic protein. Clin Orthop Relat Res 1989;(239):299-305.
  22. Winn SR, Uludag H, Hollinger JO. Carrier systems for bone morphogenetic proteins. Clin Orthop Relat Res 1999;(367):S95-106.
  23. Gautschi OP, Frey SP, Zellweger R. Bone morphogenetic proteins in clinical applications. ANZ J Surg 2007;77:626-31. https://doi.org/10.1111/j.1445-2197.2007.04175.x
  24. Geiger M, Li RH, Friess W. Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev 2003;55:1613-29. https://doi.org/10.1016/j.addr.2003.08.010
  25. Robinson Y, Heyde CE, Tschoke SK, Mont MA, Seyler TM, Ulrich SD. Evidence supporting the use of bone morphogenetic proteins for spinal fusion surgery. Expert Rev Med Devices 2008;5:75-84. https://doi.org/10.1586/17434440.5.1.75
  26. Nevins M, Kirker-Head C, Nevins M, Wozney JA, Palmer R, Graham D. Bone formation in the goat maxillary sinus induced by absorbable collagen sponge implants impregnated with recombinant human bone morphogenetic protein-2. Int J Periodontics Restorative Dent 1996;16:8-19.
  27. Boyne PJ, Marx RE, Nevins M, et al. A feasibility study evaluating rhBMP-2/absorbable collagen sponge for maxillary sinus floor augmentation. Int J Periodontics Restorative Dent 1997;17:11-25.
  28. Kirker-Head CA, Nevins M, Palmer R, Nevins ML, Schelling SH. A new animal model for maxillary sinus floor augmentation: evaluation parameters. Int J Oral Maxillofac Implants 1997;12:403-11.
  29. Hollinger JO, Schmitt JM, Buck DC, et al. Recombinant human bone morphogenetic protein-2 and collagen for bone regeneration. J Biomed Mater Res 1998;43:356-64. https://doi.org/10.1002/(SICI)1097-4636(199824)43:4<356::AID-JBM3>3.0.CO;2-7
  30. McKay WF, Peckham SM, Marotta JS, editors. The science of RhBMP-2. St Louise, MA: Quality Medical Publishing Inc; 2006.
  31. Herford AS, Boyne PJ. Reconstruction of mandibular continuity defects with bone morphogenetic protein-2 (rhBMP-2). J Oral Maxillofac Surg 2008;66:616-24. https://doi.org/10.1016/j.joms.2007.11.021
  32. Burkus JK, Gornet MF, Glassman SD, et al. Blood serum antibody analysis and long-term follow-up of patients treated with recombinant human bone morphogenetic protein-2 in the lumbar spine. Spine (Phila Pa 1976) 2011;36:2158-67. https://doi.org/10.1097/BRS.0b013e3182059a8c
  33. Kim SJ, Kim MR, Oh JS, Han I, Shin SW. Effects of polycaprolactone- tricalcium phosphate, recombinant human bone morphogenetic protein-2 and dog mesenchymal stem cells on bone formation: pilot study in dogs. Yonsei Med J 2009;50:825-31. https://doi.org/10.3349/ymj.2009.50.6.825
  34. Kim HJ, Kang SW, Lim HC, et al. The role of transforming growth factor-beta and bone morphogenetic protein with fibrin glue in healing of bone-tendon junction injury. Connect Tissue Res 2007;48:309-15. https://doi.org/10.1080/03008200701692610

Cited by

  1. Stepwise verification of bone regeneration using recombinant human bone morphogenetic protein-2 in rat fibula model vol.43, pp.6, 2017, https://doi.org/10.5125/jkaoms.2017.43.6.373
  2. Microcomputed Tomography and Histological Study of Bone Regeneration Using Tooth Biomaterial with BMP-2 in Rabbit Calvarial Defects vol.2021, pp.None, 2014, https://doi.org/10.1155/2021/6690221
  3. Bioactivity of a Novel Polycaprolactone-Hydroxyapatite Scaffold Used as a Carrier of Low Dose BMP-2: An In Vitro Study vol.13, pp.3, 2014, https://doi.org/10.3390/polym13030466
  4. Bone Morphogenetic Proteins, Carriers, and Animal Models in the Development of Novel Bone Regenerative Therapies vol.14, pp.13, 2014, https://doi.org/10.3390/ma14133513
  5. Repair of long bone defects of large size using a tissue-engineered periosteum in a rabbit model vol.32, pp.9, 2014, https://doi.org/10.1007/s10856-021-06579-7