• 제목/요약/키워드: Critical bone defect

Search Result 67, Processing Time 0.024 seconds

Investigation of a pre-clinical mandibular bone notch defect model in miniature pigs: clinical computed tomography, micro-computed tomography, and histological evaluation

  • Carlisle, Patricia L.;Guda, Teja;Silliman, David T.;Lien, Wen;Hale, Robert G.;Baer, Pamela R. Brown
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.42 no.1
    • /
    • pp.20-30
    • /
    • 2016
  • Objectives: To validate a critical-size mandibular bone defect model in miniature pigs. Materials and Methods: Bilateral notch defects were produced in the mandible of dentally mature miniature pigs. The right mandibular defect remained untreated while the left defect received an autograft. Bone healing was evaluated by computed tomography (CT) at 4 and 16 weeks, and by micro-CT and non-decalcified histology at 16 weeks. Results: In both the untreated and autograft treated groups, mineralized tissue volume was reduced significantly at 4 weeks post-surgery, but was comparable to the pre-surgery levels after 16 weeks. After 16 weeks, CT analysis indicated that significantly greater bone was regenerated in the autograft treated defect than in the untreated defect (P=0.013). Regardless of the treatment, the cortical bone was superior to the defect remodeled over 16 weeks to compensate for the notch defect. Conclusion: The presence of considerable bone healing in both treated and untreated groups suggests that this model is inadequate as a critical-size defect. Despite healing and adaptation, the original bone geometry and quality of the pre-injured mandible was not obtained. On the other hand, this model is justified for evaluating accelerated healing and mitigating the bone remodeling response, which are both important considerations for dental implant restorations.

Spontaneous bone regeneration after enucleation of jaw cysts: a comparative study of panoramic radiography and computed tomography (악골 낭종의 적출술 후 골재생에 대한 파노라마 촬영과 컴퓨터 단층촬영의 비교 분석)

  • Kim, Taek-Sung;Lee, Jae-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.2
    • /
    • pp.100-107
    • /
    • 2010
  • Introduction: A cyst is a closed pathologic sac containing fluid or semi-solid material in central region. The most common conventional treatment for a cyst is enucleation. It was reported that spontaneous bone healing could be accomplished without bone grafting. We are trying to evaluate bone reconstruction ability by analyzing panorama radiograph and computed tomography (CT) scan with retrograde studying after cyst enucleation. In this way we are estimating critical size defect for spontaneous healing without bone graft. Materials and Methods: The study comprised of 45 patients who were diagnosed as cysts and implemented enucleation treatment without bone graft. After radiograph photo taking ante and post surgery for 6, 12, 18, 24 months, the healing surface and volumetric changes were calculated. Results: 1. Spontaneous bone healing was accomplished clinically satisfying 12 months later after surgery. But analyzing CT scan, defect volume changes indicate 79.24% which imply incomplete bone healing of defect area. 2. Comparing volume changes of defect area of CT scan, there are statistical significance between under $5,000mm^{3}$ and over $5,000mm^{3}$. The defect volume of $5,000mm^{3}$ shows $2.79{\times}1.91$cm in panoramic view. Conclusion: Bone defects, which are determined by a healed section using a panoramic view, compared to CT scans which do not show up. Also we can estimate the critical size of defects for complete healing.

STUDY ON THE CRITICAL MAINTENANCE PERIOD OF MILLIPORE FILTER MEMBRANE IN RATS (백서에서 Millipore filter membrane의 임계유지기간에 대한 연구)

  • Kim, Mi-Suk;Yeo, Hwan-Ho;Kim, Su-Gwan;Lim, Sung-Chul
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.4
    • /
    • pp.274-279
    • /
    • 2002
  • The purpose of this study is to evaluate the critical maintenance period of absorbable membrane for guided bone regeneration. Fortynine Sprague-Dawley rats weighing about 300g were divided into seven groups. An 8 mm circular full-thickness defect in calvarial bone was made and then cellular acetate porous filter (Millipore $filter^{(R)}$.) was placed on the calvarial bone defect. The filter was removed at 2, 3, 4, 5, 6, 8 and 11 weeks after placement. Rats were sacrificed at 12 weeks the placement of cellular acetate porous filter. The specimens were stained with Hematoxylin-Eosin and observed under light microscope. The amount of regenerated bone was measured from both margin of calvarial bone defect (unit : mm). The results were as follows. Bone regeneration of each experimental group was increased gradually and the bond defect was almost completely filled with new bone in 5-, 6-, 8-, and 11-week experimental group. Histologic findings showed mild inflammatory response and granulation tissue formation without apparent adverse effects on the healing process. In 11-week experimental group, the bone defect was completely filled with new bone containing abundant osteoid which was oriented to the dural side and contribute to bony thickening. We suggest that non-absorbable membrane and bioabsorbable membrane presumably should remain intact for longer than 5 weeks to be effective.

Are critical size bone notch defects possible in the rabbit mandible?

  • Carlisle, Patricia L.;Guda, Teja;Silliman, David T.;Hale, Robert G.;Baer, Pamela R. Brown
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.45 no.2
    • /
    • pp.97-107
    • /
    • 2019
  • Objectives: Small animal maxillofacial models, such as non-segmental critical size defects (CSDs) in the rabbit mandible, need to be standardized for use as preclinical models of bone regeneration to mimic clinical conditions such as maxillofacial trauma. The objective of this study is the establishment of a mechanically competent CSD model in the rabbit mandible to allow standardized evaluation of bone regeneration therapies. Materials and Methods: Three sizes of bony defect were generated in the mandibular body of rabbit hemi-mandibles: $12mm{\times}5mm$, $12mm{\times}8mm$, and $15mm{\times}10mm$. The hemi-mandibles were tested to failure in 3-point flexure. The $12mm{\times}5mm$ defect was then chosen for the defect size created in the mandibles of 26 rabbits with or without cautery of the defect margins and bone regeneration was assessed after 6 and 12 weeks. Regenerated bone density and volume were evaluated using radiography, micro-computed tomography, and histology. Results: Flexural strength of the $12mm{\times}5mm$ defect was similar to its contralateral; whereas the $12mm{\times}8mm$ and $15mm{\times}10mm$ groups carried significantly less load than their respective contralaterals (P<0.05). This demonstrated that the $12mm{\times}5mm$ defect did not significantly compromise mandibular mechanical integrity. Significantly less (P<0.05) bone was regenerated at 6 weeks in cauterized defect margins compared to controls without cautery. After 12 weeks, the bone volume of the group with cautery increased to that of the control without cautery after 6 weeks. Conclusion: An empty defect size of $12mm{\times}5mm$ in the rabbit mandibular model maintains sufficient mechanical stability to not require additional stabilization. However, this defect size allows for bone regeneration across the defect. Cautery of the defect only delays regeneration by 6 weeks suggesting that the performance of bone graft materials in mandibular defects of this size should be considered with caution.

Effect of hydroxyapatite on critical-sized defect

  • Kim, Ryoe-Woon;Kim, Ji-Hyoung;Moon, Seong-Yong
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.26.1-26.6
    • /
    • 2016
  • Background: Xenologous or synthetic graft materials are commonly used as an alternative for autografts for guided bone regeneration. The purpose of this study was to evaluate effectiveness of carbonate apatite on the critical-size bone defect of rat's calvarium. Methods: Thirty-six critical-size defects were created on 18 adult male Sprague-Dawley rat calvaria under general anesthesia. Calvarial bones were grinded with 8 mm in daimeter bilaterally and then filled with (1) no grafts (control, n = 10 defects), (2) bovine bone mineral (Bio-$Oss^{(R)}$, Geistlich Pharma Ag. Swiss, n = 11 defects), and (3) hydroxyapatite ($Bongros^{(R)}$, Bio@ Inc., Seongnam, Korea, n = 15 defects). At 4 and 8 weeks after surgery, the rats were sacrificed and all samples were processed for histological and histomorphometric analysis. Results: At 4 weeks after surgery, group 3 ($42.90{\pm}9.33%$) showed a significant difference (p < 0.05) compared to the control ($30.50{\pm}6.05%$) and group 2 ($28.53{\pm}8.62%$). At 8 weeks after surgery, group 1 ($50.21{\pm}6.23%$), group 2 ($54.12{\pm}10.54%$), and group 3 ($50.92{\pm}6.05%$) showed no significant difference in the new bone formation. Conclusions: $Bongros^{(R)}$-HA was thought to be the available material for regenerating the new bone formation.

Promoted Bone Regeneration by Nanoparticle-Type Sustained Release System of BMP-2 in Hydrogel

  • Chung, Yong-Il;Lee, Seung-Young;Tae, Gi-Yoong;Ahn, Kang-Min;Jeon, Seung-Ho;Lee, Jong-Ho
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.264-264
    • /
    • 2006
  • The nanoparticle-hydrogel complex as a new bone defect replacement matrix, which is composed of the nanoparticles for the sustained release of BMP and the hydrogel for filling the bone defect site and playing a role as a matrix where new bone can grow, is presented. In vivo evaluation of bone formation was characterized by soft X-ray, MT staining, and calcium assay, based on the rat calvarial critical size defect model. The effective bone regeneration was achieved by the BMP-2 loaded nanoparticles in fibrin gel, compare to bare fibrin gel, the nanoparticle-fibrin gel complex without BMP-2, or the BMP-2 in fibrin gel, in terms of the new bone area and the gray level in X-ray, the bone marrow are, and the calcium content in the initial defect site. These findings suggest that the BMP-2 loaded nanoparticle-fibrin gel complex can a promising candidate for a new bone defect replacement matrix.

  • PDF

Development of an experimental model for radiation-induced inhibition of cranial bone regeneration

  • Jung, Hong-Moon;Lee, Jeong-Eun;Lee, Seoung-Jun;Lee, Jung-Tae;Kwon, Tae-Yub;Kwon, Tae-Geon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.40
    • /
    • pp.34.1-34.8
    • /
    • 2018
  • Background: Radiation therapy is widely employed in the treatment of head and neck cancer. Adverse effects of therapeutic irradiation include delayed bone healing after dental extraction or impaired bone regeneration at the irradiated bony defect. Development of a reliable experimental model may be beneficial to study tissue regeneration in the irradiated field. The current study aimed to develop a relevant animal model of post-radiation cranial bone defect. Methods: A lead shielding block was designed for selective external irradiation of the mouse calvaria. Critical-size calvarial defect was created 2 weeks after the irradiation. The defect was filled with a collagen scaffold, with or without incorporation of bone morphogenetic protein 2 (BMP-2) (1 ㎍/ml). The non-irradiated mice treated with or without BMP-2-included scaffold served as control. Four weeks after the surgery, the specimens were harvested and the degree of bone formation was evaluated by histological and radiographical examinations. Results: BMP-2-treated scaffold yielded significant bone regeneration in the mice calvarial defects. However, a single fraction of external irradiation was observed to eliminate the bone regeneration capacity of the BMP-2-incorporated scaffold without influencing the survival of the animals. Conclusion: The current study established an efficient model for post-radiation cranial bone regeneration and can be applied for evaluating the robust bone formation system using various chemokines or agents in unfavorable, demanding radiation-related bone defect models.

Effect of Porcine Cancellous Bones on Regeneration in Rats with Calvarial Defect (랫드의 두개골 결손부에서 돼지 해면질골이 골재생에 미치는 영향)

  • Yoo, Kyeong-Hoon;Kim, Se-Eun;Shim, Kyung-Mi;Park, Hyun-Jeong;Choi, Seok-Hwa;Kang, Seong-Soo
    • Journal of Life Science
    • /
    • v.20 no.8
    • /
    • pp.1207-1213
    • /
    • 2010
  • The purpose of this study was to evaluate the effect of porcine cancellous bone as a scaffold in a rat calvarial defect model. Critical-sized defects were created in 30 male Sprague-Dawley rats. The animals were divided into critical defect (CD, n=10), $\beta$-tricalcium phosphate (TCP) graft (BT, n=10) and porcine cancellous bone graft (PCB, n=10) groups. Each defect was filled with $\beta$-TCP mixed with fibrin glue or porcine cancellous bone powder mixed with fibrin glue. In the CD group, the defect was left empty. All rats were sacrificed at 8 weeks after bone graft surgery, and bone formation was evaluated by gross observation, plain radiography, micro-computed tomography scanning and histological evaluation. Repair of bone defect was the least in the CD group, and significant new bone formation was observed in the PCB group. Grafting of porcine cancellous bone was more efficient for regenerating new bone than grafting $\beta$-TCP.

The effect of LiF-maleic acid added calcium aluminate hone cement & CA-PMMA composite bone cement on the healing of calvarial defect6) (LiF-maleic acid 첨가 calcium aluminate 골시멘트 및 CA-PMMA 복합 골시멘트가 백서 두개골 결손부 치유에 미치는 영향)

  • Shin, Jung-A;Yun, Jeong-Ho;Oh, Seung-Han;Baik, Jeong-Won;Choi, Se-Young;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.4
    • /
    • pp.753-767
    • /
    • 2002
  • The purpose of this study was to evaluate histologically the effect of LiF-maleic acid added calcium aluminate(LM-CA) bone cement & CA-PMMA composite bone cement on the healing of calvarial defect in Sprague-Dawley rats. The critical size defects were surgically produced in the calvarial bone using the 8mm trephine bur. The rats were divided in three groups : In the control group, nothing was applied into the defect of each rat. LM-CA bone cement was implanted in the experimental group 1 and CA-PMMA composite bone cement was implanted in the experimental group 2. Rats were sacrificed at 2, 8 weeks after surgical procedure. The specimens were examined by histologic analysis, especially about the bone-cement interface and the response of surrounding tissue. The results are as follows; 1. In the control group, inflammatory infiltration was observed at 2 weeks. At 8 weeks, periosteum and duramater were continuously joined together in the defect area. But the center of defect area was filled up with the loose connective tissue. 2. In the experimental group 1, the bonding between implanted bone cement and the existing bone was seen, which more increased in 8 weeks than 2 weeks. Inflammatory infiltration and the dispersion of implanted bone cement particles were seen in both 2 weeks and 8 weeks. 3. In the experimental group 2, implanted bone itself had a dimensional stability and no bonding between implanted bone cement and the existing bone was seen in both 2 weeks and 8 weeks. Implanted bone cement was encapsulated by fibrous connective tissue. In addition, inflammatory infiltration was seen around implanted bone cement. On the basis of these results, when LM-CA bone cement or CA-PMMA composite bone cement was implanted in rat calvarial defect, LM-CA bone cement can be used as a bioactive bone graft material due to ability of bonding to the existing bone and CA-PMMA can be used as a graft material for augmentation of bone-volume due to dimensional stability.

Angiogenic factor-enriched platelet-rich plasma enhances in vivo bone formation around alloplastic graft material

  • Kim, Eun-Seok;Kim, Jae-Jin;Park, Eun-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.2 no.1
    • /
    • pp.7-13
    • /
    • 2010
  • Although most researchers agree that platelet-rich plasma (PRP) is a good source of autogenous growth factors, its effect on bone regeneration is still controversial. The purpose of this study was to evaluate whether increasing angiogenic factors in the human PRP to enhance new bone formation through rapid angiogenesis. MATERIAL AND METHODS. In vitro, the human platelets were activated with application of shear stress, $20\;{\mu}g/ml$ collagen, 2 mM $CaCl_2$ and 10U thrombin/$1\;{\times}\;10^9$ platelets. Level of vascular endothelial growth factor (VEGF) and platelet microparticle (PMP) in the activated platelets were checked. In the animal study, human angiogenic factors-enriched PRP was tested in 28 athymic rat's cranial critical bone defects with $\beta$-TCP. Angiogenesis and osteogenesis were evaluated by laser Doppler perfusion imaging, histology, dual energy X-ray densinometry, and micro-computed tomography. RESULTS. In vitro, this human angiogenic factors-enriched PRP resulted in better cellular proliferation and osteogenic differentiation. In vivo, increasing angiogenic potential of the PRP showed significantly higher blood perfusion around the defect and enhanced new bone formation around acellular bone graft material. CONCLUSION. Angiogenic factor-enriched PRP leads to faster and more extensive new bone formation in the critical size bone defect. The results implicate that rapid angiogenesis in the initial healing period by PRP could be supposed as a way to overcome short term effect of the rapid angiogenesis.