• Title/Summary/Keyword: Critical Geometry

Search Result 309, Processing Time 0.022 seconds

Feasibility Study of Sludge Detection inside Pipes Using Torsional Guided Waves (비틀림 유도파를 이용한 배관 슬러지 검출 방법의 현장 적용성 평가)

  • Park, Kyung-Jo
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.100-105
    • /
    • 2014
  • It has been previously reported that in principle sludge and blockages can be detected and even characterized by using guided ultrasonic torsional waves, based on an idealized model in which the sludge layer was simplified in terms of geometry and material properties. The work revealed that the presence of a layer inside a pipe scatters the guided wave propagating in the pipe and both the reflection and transmission of the guided wave can be used to effectively detect and characterize the layer. This paper proceeds the work by taking into account more realistic sludge characteristics, including irregular circumferential profiles of the sludge layer and imperfect bonding state between the sludge and the pipe. The influence of these issues is investigated to identify the critical factors that influence the detection and characterization capability of the two measurements.

Design Modification of the Stamping Die for the Improvement of Surface Quality of the Front End Module Carrier Upper Member (프런트 엔드 모듈 캐리어 어퍼 부재의 면품질 개선을 위한 금형설계 변경)

  • Kim S. H.
    • Transactions of Materials Processing
    • /
    • v.14 no.2 s.74
    • /
    • pp.153-159
    • /
    • 2005
  • Design modification of the stamping die for the upper member of a front end module carrier is carried out in order to improve the surface quality of the final product. The small inferiority induced by wrinkling near the wall of the upper member has been inspected after the draw-forming process. The finite element analysis is pursued with the whole geometry in order to consider the complicated shape. The simulation shows that the excess metal is developed by the irregular contact of the blank the tool and it remains after the final stroke. This paper proposes two guidelines for the modification. One is to add the draw-bead near the critical region in order to increase the draw-in force. The other is to modify the tool shape such as the forming shape at the wall in order to absorb the excess metal before the final stroke. Simulation results show that the proposed guidelines both guarantee the improved surface quality.

Investigation of Springback Behavior of DP780 Steel Sheets after the U-bending Process (U-bending에서의 DP780 강판의 스프링백 거동 연구)

  • Choi, M.K.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.21 no.6
    • /
    • pp.384-388
    • /
    • 2012
  • Sheet metal forming processes induce residual stress in the final product due to plastic deformation. The residual stress leads to elastic recovery of the formed part called springback, which causes shape errors in the final product. This error is a serious issue, especially for high strength steels, which are widely used in auto-body structures. Therefore, the evaluation of the amount of springback becomes critical for high strength steels. This paper investigates the springback behavior of DP780 steel sheets after the U-bending process using the geometry of the standard U-shape tool from the NUMISHEET'93 benchmark problem. The amounts of springback were measured as a function of the intrusion direction, forming speed and blank holding force.

Rotordynamic Performance of High-Tc superconductor Bearings (고온초전도베어링의 회전체역학적 특성)

  • 성태현;이준성;한영희;김영철;최상규;김상준
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.180-184
    • /
    • 2000
  • The dymanic properties of the high-Tc superconductor journal bearings used in the KEPRI flywheel energy storage system was experimentally estimated by using the imbalance excitation method. The test reveals that the superconductor bearings have very low stiffness compared to that of typical oil film bearings with similar geometry and almost the same amount of damping as in roller bearings, which may not be helpful for the system to pass through the critical speeds. However, it was found out that the cross-coupled stiffness and damping terms were almost negligible so that the system could be more stable than the one using lil film bearings. Also with proper design of the rotor-bearing system and accurate balancing of the rotor, the high-Tc superconductor bearing is one of the most viable alternatives to the conventional ones due to its oil-free, non-contact running capability in a vacuum environment, which is literally essential for highly efficient flywheel energy storage systems.

  • PDF

Determination of winding diameter based on bending strain analysis for REBCO coated conductor tapes

  • Leon, M.B. De;Dedicatoria, M.J.;Shin, H.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.2
    • /
    • pp.8-11
    • /
    • 2012
  • In order to recognize the allowable bending diameter in coils, the strain as function of diameters is evaluated. The irreversible strain limits of $I_c$ in the easy and hard bending modes were measured. Strains were calculated at the coating film in the easy bending and at outer edge or inner edge in the hard bending of the CC tape, respectively. The tape geometry subjected to bending procedures is considered from the current industrial spool winding operation. Through the linear superposition of strain induced in different bending modes regarding the expressions, the appropriate design for critical bending diameter is suggested. Results proved that the existence of buckling resulting from bending in hard direction when applied strain exceeded 0.6% is possible. The depicted results showed that the strain limit as a viable parameter should be considered for future purposes.

CFD ANALYSIS ON AIRCRAFT STORE SEPARATION VALIDATION (무장분리 안전성을 위한 전산해석)

  • Jueng, H.S.;Yoon, Y.H.;Lee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.14-16
    • /
    • 2007
  • A critical problem in the integration of stores into new and existing aircraft is the safe separation of the stores from the aircraft at a variety of flight conditions representative of the aircraft flight regime. Typically, the certification of a particular store/aircraft/flight condition combination is accomplished by a flight test. Flight tests are very expensive and do expose the pilot and aircraft to a certain amount of risk. Wind tunnel testing, although less expensive than flight testing, is still expensive. Computational Fluid Dynamics(CFD) has held out the promise of alleviating expensive and risk by simulating weapons separation computationally. The forces and moments on a store at carriage and at various points in the flow field of te aircraft can be computed using CFD applied to the full aircraft and store geometry. This study needs full dynamic characteristics study and flow analysis for securing store separation safety. Present study performs dynamic simulation of store separation with flow analysis using Chimera grid scheme which is usually used for moving simulations.

  • PDF

Numerical Study of Wavy Taylor-Couette Flow (II) -With an Axial Flow- (Wavy Taylor-Couette 유동에 대한 전산해석 (II) -축방향 유동이 있는 경우-)

  • Hwang, Jong-Yeon;Yang, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.705-712
    • /
    • 2001
  • The flow between two concentric cylinders, with the inner one rotating and with an imposed pressure-driven axial flow, is studied using numerical simulation. The case without the axial flow was investigated in the preceding paper. This study considers the identical flow geometry as in the experiments of Wereley and Lueptow[Phys. Fluid, 11(12), 1999]. They carried out experiments using PIV to measure the velocity fields in a meridional plane of the annulus in detail. When an axial flow is imposed, the critical Taylor number is increased. The axial flow stabilizes the flow field and decreases the torque required to rotate the inner cylinder. The velocity vector fields obtained also show the same flow features found in the experiments of Wereley and Lueptow.

Stress Analysis of Rotary Turbine Engine Disc in High Temperature (고온에서 회전하는 터빈엔진 디스크의 응력해석)

  • 황수철
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.4
    • /
    • pp.33-41
    • /
    • 1995
  • This study includes thermal plasticity analyses for a turbine rotor with the simple geometry and the boundary conditions. When centrifugal or thermal stress are applied at the high temperature material of engine blade, stress distributions I material ($\sigma$${\gamma}$${\gamma}$, $\sigma$$\theta$$\theta$, $\tau$${\gamma}$$\theta$, Mises stress) are analyzed by computer simulation(ABQUS) as followings; 1. The maximum stress at the radial direction() is applied at the upper middle part of spline hole. 2. The maximum stress at the tangential direction() is applied at the upper right boundary of spline hole. 3. The maximum shear stress () in () direction is applied at the upper middle part of spline hole. 4. The maximum Mises stress is applied at the upper right boundary of spline hole. This stress is due to the critical stress by which rotor can be fractured according to elapsed time.

  • PDF

Design of Magnet Console for NMR Ripeness Sensor Using ANSYS

  • Cho, Seong-In;Chung, Chang-Ho;Kim, Seung-Chan
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.528-538
    • /
    • 1996
  • A magent console is critical element since its homogeneity is essential to the performance of a nuclear magnetic resonance (NMR) based sensor. Geometry and properties of magnet materials determine the magnetic flux density and homogeneity of the console. This study is carried out to develop a design scheme of the magnet console using ANSYS to reduce the design error of the magnet console compared . To enhance the performance of the magnet console, corner steel was proposed and validated by simulation and manufactured one. The corner steel increased the magnetic flux density (B) by about 1% and enhanced homogeneity by approximately 3 times. There was about 3% difference between simulated and measured B values.

  • PDF

General characteristic of springback about an automobile Panel (자동차 패널에 대한 스프링백의 일반적인 특성)

  • Lee, Jong-Moon
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.08a
    • /
    • pp.3-10
    • /
    • 2003
  • Springback after draw and flange is the critical factor affecting the product quality. It is very difficult to predict the amount of springback not only because of complex geometry and material characteristics of the stamping product, but because the methodology has not been established. In this study, springback mechanism is introduced, and experimental tryout an automobile panel is carried out for die design of automotive hood panel. Further, introduce adapting design and field springback was verified by trial experimental with the measured tryout result. Finally, introduced about general method in order to predict springback in computer simulation.

  • PDF