• 제목/요약/키워드: Critical Failure

검색결과 1,377건 처리시간 0.025초

부품(部品)의 고장특성(故障特性)를 고려한 시스템의 수명교환방침(壽命交換方針) (Age Replacement Policy for A System Considering Failure Characteristics of Components)

  • 정영배
    • 품질경영학회지
    • /
    • 제21권2호
    • /
    • pp.109-120
    • /
    • 1993
  • Most systems are composed of components which have different failure chracteristics. Since the failure characteristics of components is different, it is rational and reasonable to establish a maintenance model to be considered repair and replacement policies which are proper to failure characteristics of these components. This paper proposes the age replacement time for a system composed of components which have different failure characteristics. In this model, it is assumed that a system is composed of a critical failure component, a major failure component, minor failure component. If any failure occurs to critical component before its age replacement time, the system should be replaced. If any failure does not occur until its age replacement time, preventive replacement should be performed at age replacement time T. Major component is minimal repaired if any failure occurs during operation. Minor component should be replaced as soon as failure is found. This paper determines the optimal replacement time of the system which minimize, total maintenance cost and initial stock Quantity of minor component within this optimal replacement time. Numerical example illustrates these results.

  • PDF

야전 치명고장자료를 이용한 함정전투체계 신뢰성 분석 및 활용 방안 (A Study of Reliability Analysis and Application on Naval Combat System Using Field Critical Failure Data)

  • 김영진;오현승;최봉완
    • 산업경영시스템학회지
    • /
    • 제39권4호
    • /
    • pp.49-59
    • /
    • 2016
  • Naval combat system developed in-country is progressing at an alarming rate since 2000. ROK navy will be achieved all vessels that have combat system in the near future. The importance of System Engineering and Integrated Logistics Support based on reliability analysis is increasing. However, reliability analysis that everyone trusted and recognized is not enough and applied practically for development of Defense Acquisition Program. In particular, Existing Reliability Analysis is focusing on reliability index (Mean Time Between Failure (MTBF) etc.) for policy decision of defense improvement project. Most of the weapon system acquisition process applying in the exponential distribution simply persist unreality due to memoryless property. Critical failures are more important than simple faults to ship's operator. There are no confirmed cases of reliability analysis involved with critical failure that naval ship scheduler and operator concerned sensitively. Therefore, this study is focusing on Mean Time To Critical Failure (MTTCF), reliability on specific time and Operational Readiness Float (ORF) requirements related to critical failure of Patrol Killer Guided missile (PKG) combat system that is beginning of naval combat system developed in-country. Methods of analysis is applied parametric and non-parametric statistical techniques. It is compared to the estimates and proposed applications. The result of study shows that parametric and non-parametric estimators should be applied differently depending on purpose of utilization based on test of normality. For the first time, this study is offering Reliability of ROK Naval combat system to stakeholders involved with defense improvement project. Decision makers of defense improvement project have to active support and effort in this area for improvement of System Engineering.

안전필수 결함허용 USN시스템의 고장률정량화에 관한 연구 (Study on the Quantification of Failure Rate for Safety-critical Fault-tolerant USN System)

  • 신덕호;신경호;조현정;송용수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.1414-1419
    • /
    • 2011
  • In this paper we study the modeling to quantitatively assess the failure rate of USN system designed for fault-tolerant architecture, aiming at applying the world's best domestic USN technology to safety-critical railways. In order to apply the USN system to the safety-critical field like a train control sector that the failures of controllers may cause severe railway accidents such as train collision and derailment, the quantitative reliability and safety evaluation recommended in IEC 62278 must be preceded. We also develop the evaluation model for overall system failure rate for the distributed network structure, which is the characteristics of USN system. Especially, we allocate reliability targets to component units, and present an availability evaluation plan through the plan on the quantitative achievement of failure rate for sensor nodes, gateways, radio-communication network and servers, along with the failure rate model of the overall system considering network operational features.

  • PDF

고장형태(故障形態)를 고려한 다부품장비(多部品裝備)의 보전모형(保全模型) (Maintenance Model for Multi-Component System Considering Failure Types)

  • 정영배
    • 품질경영학회지
    • /
    • 제18권2호
    • /
    • pp.33-42
    • /
    • 1990
  • This paper proposes the maintenance model of multi-component system when the failure characteristics and types of components are considered. In this model, it is assumed that a system is composed of a critical component, a major component and a minor component. Also, failure types is classified into major failure and minor failure. If major failure occurs to critical component before system age replacement time, the system is renewed. If major failure does not occur until its age replacement time, preventive maintenance is performed at age replacement time T. Minimal repairs are carried out after each minor failure. Major component is minimal-repaired if any failure is discovered during operation. Minor component should be replaced as soon as any failure is found. This paper determines the optimal replacement time of the system which minimizes total maintenance cost. Numerical example illustrates these results.

  • PDF

Quantitative Reliability Assessment for Safety Critical System Software

  • Chung, Dae-Won
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권3호
    • /
    • pp.386-390
    • /
    • 2007
  • At recent times, an essential issue in the replacement of the old analogue I&C to computer-based digital systems in nuclear power plants becomes the quantitative software reliability assessment. Software reliability models have been successfully applied to many industrial applications, but have the unfortunate drawback of requiring data from which one can formulate a model. Software that is developed for safety critical applications is frequently unable to produce such data for at least two reasons. First, the software is frequently one-of-a-kind, and second, it rarely fails. Safety critical software is normally expected to pass every unit test producing precious little failure data. The basic premise of the rare events approach is that well-tested software does not fail under normal routine and input signals, which means that failures must be triggered by unusual input data and computer states. The failure data found under the reasonable testing cases and testing time for these conditions should be considered for the quantitative reliability assessment. We presented the quantitative reliability assessment methodology of safety critical software for rare failure cases in this paper.

Dominant failure modes identification and structural system reliability analysis for a long-span arch bridge

  • Gao, Xin;Li, Shunlong
    • Structural Engineering and Mechanics
    • /
    • 제63권6호
    • /
    • pp.799-808
    • /
    • 2017
  • Failure of a redundant long-span bridge is often described by innumerable failure modes, which make the structural system reliability analysis become a computationally intractable work. In this paper, an innovative procedure is proposed to efficiently identify the dominant failure modes and quantify the structural reliability for a long-span bridge system. The procedure is programmed by ANSYS and MATLAB. Considering the correlation between failure paths, a new branch and bound operation criteria is applied to the traditional stage critical strength branch and bound algorithm. Computational effort can be saved by ignoring the redundant failure paths as early as possible. The reliability of dominant failure mode is computed by FORM, since the limit state function of failure mode can be expressed by the final stage critical strength. PNET method and FORM for system are suggested to be the suitable calculation method for the bridge system reliability. By applying the procedure to a CFST arch bridge, the proposed method is demonstrated suitable to the system reliability analysis for long-span bridge structure.

골조 파이프 구조물의 최적신뢰성 설계 (Reliability-Based Optimum Design for Tubular Frame Structures)

  • 백점기
    • 한국해양공학회지
    • /
    • 제2권1호
    • /
    • pp.95-105
    • /
    • 1988
  • This paper describes the development of a reliability-based optimum design technique for such three dimensional tubular frames as off shore structures. The objective function is formulated for the structural weight. Constraints that probability of failure for the critical sections does not exceed the allowable probability of failure are set up. In the evaluation of the probability of failure, fatigue as well as buckling and plasticity failure are taken into account and the mean-value first-order second-moment method(MVFOSM) is applied for its calculation. In order to reduce the computing time required for the repeated structural analysis in the optimization process, reanalysis method is also applied. Application to two and three dimensional simple frame structures is performed. The influence of material properties, external forces, allowable failure probabilities and interaction between external forces on the optimum design is investigated.

  • PDF

A new strain-based criterion for evaluating tunnel stability

  • Daraei, Ako;Zare, Shokrollah
    • Geomechanics and Engineering
    • /
    • 제16권2호
    • /
    • pp.205-215
    • /
    • 2018
  • Strain-based criteria are known as a direct method in determining the stability of the geomechanical structures. In spite of the widely use of Sakurai critical strain criterion, it is so conservative to make use of them in rocks with initial plastic deformation on account of the considerable difference between the failure and critical strains. In this study, a new criterion has been developed on the basis of the failure strain to attain more reasonable results in determining the stability status of the tunnels excavated in the rocks mostly characterized by plastic-elastic/plastic behavior. Firstly, the stress-strain curve was obtained having conducted uniaxial compression strength tests on 91 samples of eight rock types. Then, the initial plastic deformation was omitted making use of axis translation technique and the criterion was presented allowing for the modified secant modulus and by use of the failure strain. The results depicted that the use of failure strain criterion in such rocks not only decreases the conservativeness of the critical strain criterion up to 42%, but also it determines the stability status of the tunnel more accurately.

Critical Velocity of Fluidelastic Vibration in a Nuclear Fuel Bundle

  • Kim, Sang-Nyung;Jung, Sung-Yup
    • Journal of Mechanical Science and Technology
    • /
    • 제14권8호
    • /
    • pp.816-822
    • /
    • 2000
  • In the core of the nuclear power plant of PWR, several cases of fuel failure by unknown causes have been experienced for various fuel types. From the common features of the failure pattern, failure lead time, flow conditions, and flow induced vibration characteristics in nuclear fuel bundles, it is deduced that the fretting wear failure of the fuel rod at the spacer grid position is due to the fluidelastic vibration. In the past, fluidelastic vibration was simulated by quasi -static semi-analytical model, so called the static model, which could not account for the interaction between the rods within a bundle. To overcome this defect and to provide for more flexibilities applicable to the fuel bundle, Tanaka's unsteady model was modified to accomodate the geometrical differences and governing parameter changes during the operations such as the number of rods, pitch to diameter ratio (P/D), spring force, damping coefficient, etc. The critical velocity was calculated by solving the governing equations with the MATLAB code. A comparison between the estimated critical velocity and the test result shows a good agreement. Finally, the level of decrease of the critical velocity due to the reduction in the spring force and reduced damping coefficient due to the radiation exposure is also estimated.

  • PDF

A LightGBM and XGBoost Learning Method for Postoperative Critical Illness Key Indicators Analysis

  • Lei Han;Yiziting Zhu;Yuwen Chen;Guoqiong Huang;Bin Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권8호
    • /
    • pp.2016-2029
    • /
    • 2023
  • Accurate prediction of critical illness is significant for ensuring the lives and health of patients. The selection of indicators affects the real-time capability and accuracy of the prediction for critical illness. However, the diversity and complexity of these indicators make it difficult to find potential connections between them and critical illnesses. For the first time, this study proposes an indicator analysis model to extract key indicators from the preoperative and intraoperative clinical indicators and laboratory results of critical illnesses. In this study, preoperative and intraoperative data of heart failure and respiratory failure are used to verify the model. The proposed model processes the datum and extracts key indicators through four parts. To test the effectiveness of the proposed model, the key indicators are used to predict the two critical illnesses. The classifiers used in the prediction are light gradient boosting machine (LightGBM) and eXtreme Gradient Boosting (XGBoost). The predictive performance using key indicators is better than that using all indicators. In the prediction of heart failure, LightGBM and XGBoost have sensitivities of 0.889 and 0.892, and specificities of 0.939 and 0.937, respectively. For respiratory failure, LightGBM and XGBoost have sensitivities of 0.709 and 0.689, and specificity of 0.936 and 0.940, respectively. The proposed model can effectively analyze the correlation between indicators and postoperative critical illness. The analytical results make it possible to find the key indicators for postoperative critical illnesses. This model is meaningful to assist doctors in extracting key indicators in time and improving the reliability and efficiency of prediction.