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Abstract 

 
Accurate prediction of critical illness is significant for ensuring the lives and health of patients. 
The selection of indicators affects the real-time capability and accuracy of the prediction for 
critical illness. However, the diversity and complexity of these indicators make it difficult to 
find potential connections between them and critical illnesses. For the first time, this study 
proposes an indicator analysis model to extract key indicators from the preoperative and 
intraoperative clinical indicators and laboratory results of critical illnesses. In this study, 
preoperative and intraoperative data of heart failure and respiratory failure are used to verify 
the model. The proposed model processes the datum and extracts key indicators through four 
parts. To test the effectiveness of the proposed model, the key indicators are used to predict 
the two critical illnesses. The classifiers used in the prediction are light gradient boosting 
machine (LightGBM) and eXtreme Gradient Boosting (XGBoost). The predictive 
performance using key indicators is better than that using all indicators. In the prediction of 
heart failure, LightGBM and XGBoost have sensitivities of 0.889 and 0.892, and specificities 
of 0.939 and 0.937, respectively. For respiratory failure, LightGBM and XGBoost have 
sensitivities of 0.709 and 0.689, and specificity of 0.936 and 0.940, respectively. The proposed 
model can effectively analyze the correlation between indicators and postoperative critical 
illness. The analytical results make it possible to find the key indicators for postoperative 
critical illnesses. This model is meaningful to assist doctors in extracting key indicators in time 
and improving the reliability and efficiency of prediction. 
 
Keywords: Critical illness, Light gradient boosting machine (LightGBM), Indicator 
analysis, Shapley additive explanation (SHAP) value, Machine learning 
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1. Introduction 

The occurrence of critical illness in perioperative patients will not only increase the medical 
expenses of patients, but also affect the Rehab Results (FCR) of patients [1, 2], and even lead 
to the death of patients. The study of Khuri et al. [3] showed that the median survival time of 
patients would be reduced by 69% if critical adverse events occurred within 30 days after the 
operation, and the long-term consequences of short-term surgical complications had a 
profound impact on the life expectancy and quality of life of survivors [4]. Preoperative and 
intraoperative risk prediction of critical illness, immediate capture of the incidence of critical 
illness for patients, and targeted measures can greatly reduce the pain and mortality of patients, 
avoid missing the best time for treatment, and avoid excessive use of drugs, which is conducive 
to the rational allocation of hospital resources. 

For the prediction of critical illness risk, various monitoring indicators of patients are the 
key points to prediction. The quality and selection of the indicators have an important impact 
on the accuracy and reliability of the results for prediction. However, the samples in the dataset 
of critical illness are not complete, and there are various redundant and repetitive phenomena. 
At the same time, the indicators in the dataset are not necessarily related to critical illness, and 
the indicators of patients required for different illnesses are inconsistent when making 
treatment decisions. For doctors and clinicians, excessive patient test indicators will also 
interfere with real-time diagnosis and treatment decisions and affect the accuracy of diagnosis. 
Therefore, an efficient method is needed to analyze and sort out these data, remove irrelevant 
and redundant indicators, and select key indicators, so as to improve the efficiency and 
accuracy of critical illness prediction and real-time diagnosis and treatment decisions of 
doctors.  

At present, machine learning has been widely used in the medical field by researchers [5-
10]. Bendi Venkata Ramana et al. [11] used support vector machine, C4.5 decision tree, BP 
neural network to complete diagnosis classification based on textual dataset of liver. Patricio 
Miguel et al. [12] used logistic regression, support vector machine, and random forest 
classification algorithms to predict the presence of breast cancer based on blood sample data. 
Aljaaf et al. [13] proposed a multi-level risk assessment of developing heart failure based on 
C4.5 decision tree. Otoom et al [14] presented a system to analyze and monitor coronary 
arteries, their data set had 76 features and only 13 features were used. Studies by Morelli V et 
al. [15] and Ursini F et al. [16] had shown that inflammatory factors, blood lipids and uric acid 
can be used as indicators for the evaluation and prediction of cardiovascular adverse events in 
patients with diabetes after surgery. Zhang et al. [17] adopted a classification scheme based 
on a one-class kernel principle component analysis (KPCA) model ensemble that has been 
proposed for the classification of medical images, and the accuracy rate of recognition in the 
UCI breast cancer dataset (diagnostic) was 92%. Spanhol et al. [18] used fusion rules to 
combine different convolutional neural networks for classification, and the average 
recognition rate on the BreakHis dataset [19] reached 83.2%. Han et al. [20] designed a 
structured deep-learning model combined with data enhancement methods, the accuracy of 
their work on the BreakHis dataset was 96%. These studies demonstrate the positive role of 
machine learning methods in the prediction of disease. Janez Demsar et al. [21] used the 
RELIEFF method combined with machine learning methods such as Naive Bayes to prove 
that a small number of features may carry enough information to build a reasonable and 
accurate prediction model. Prerna Sharma et al. [22] used the improved gray wolf algorithm 
to select features and make predictions for Perkins, achieving an estimated accuracy of 94.83%. 
Filipe Lucini et al. [23] used data mining methods combined with machine learning algorithms 
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such as support vector machines, to predict the future hospitalization and discharge of patients. 
Since a single classifier cannot make the diagnosis of all diseases, MadhuSudana Rao Nalluri 
et al. [24] proposed a hybrid classifier parameter optimization diagnosis system based on three 
evolutionary algorithms, support vector machines, and multilayer perceptron to achieve the 
diagnosis for mixture of diseases. The above researches show that artificial intelligence is a 
kind of effective method to predict the risk of illness and the features in the dataset are not 
need to be fully used in the prediction. However, most of the data features used in the 
prediction of the above studies were extracted using different methods for specific illnesses or 
relying on the experience of the physician. In 2018, L. Nelson Sanchez-Pinto et al. [25] 
analyzed 8 different feature selection methods for the variable selection methods of machine 
learning models currently used in clinical diagnosis. Their results showed that the regression-
based feature selection method seems to achieve better parsimony in clinical prediction on 
smaller data sets, while tree-based methods perform better on larger data sets. L. Nelson 
Sanchez-Pinto et al. studied the effectiveness of two types of feature extraction algorithms in 
different-size data sets, and their work is instructive. For a range of critical illnesses, an 
effective method is still needed to analyze their association with preoperative and 
intraoperative indicators of patients. 

In view of the characteristics of various medical indicators and different formats of critical 
illness patients, this paper proposed a critical illness indicator analysis model based on a 
supervised feature selection method. This model used a light gradient boosting machine 
(LightGBM) [26] and Shapley additive explanation (SHAP) values [27] to analyze the 
correlation between the indicators and critical illness and select the corresponding key 
indicators, so as to facilitate real-time diagnosis and treatment by doctors and improve the 
accuracy of prediction for critical illness. 

2. The Proposed Model 
This section mainly describes the key indicators analysis model for the prediction of critical 
illness. There are four parts in the proposed model and the overall flow of this model is shown 
in Fig. 1. Data extraction and merging, missing values processing and single unique values 
processing make up the first part. Collinear indicators processing is the second part. Analysis 
of the importance of indicators is the third part. Key indicators selection is the last part. 
 

 
 

Fig. 1. Flowchart of the proposed method. 
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2.1 Data preprocessing 

2.1.1 Data extraction and merging 
To analyze the correlation between indicators and critical illness, the preoperative and 
intraoperative test data should be extracted and combined correctly. Since patients were not 
tested for all indicators during each preoperative examination, there were some missing values 
in various preoperative test tables. In the preoperative samples, the proposed model took 14 
days as the threshold and completes the examination information of each patient through (1), 
where i, j k, je ,e  represent the examination values of the indicator j detected of a patient at time i 
and k. Threshold set to 14 days was the result after a discussion with doctors. Then, the 
preoperative information of patients in each table was combined with reference to the medical 
record number and the operation time of patients in the surgical information table. 
 

 ei,j = {
null 𝑖𝑖 − 𝑘𝑘 > 14 days 
ek,j 𝑖𝑖 − 𝑘𝑘 ≤ 14 days  (1) 

 

The intraoperative monitoring data of patients were time series. To combine these data with 
preoperative test data, the statistical values such as mean values, variance, standard deviation, 
max values, min values, kurtosis and skewness of indicators in the intraoperative monitoring 
data were calculated. Then the intraoperative monitoring data were represented by the statistic 
values.  

After extracting the preoperative and intraoperative test data, the integrated examination 
data were generated by combining the two kinds of data with reference to the medical record 
number and the operation time of patients. Then, the test dataset has been extracted. 

2.1.2 Missing value processing 
Although the preoperative test dataset has been filled in the previous part, a large number of 
missing values still exist in the test dataset, which is caused by incomplete data records and 
different test indicators for different patients. The amount of missing value affects the 
contribution of this indicator for the prediction of critical illness and the indicators with a large 
number of missing values are invalid for classification. The proposed model statistically 
analyzed the missing values of all indicators. Firstly, the proportion of missing values in each 
indicator was calculated through (2), where im  represents the proportion of missing values for 
indicator i, MissNum  is the number of missing values in indicator i, TotalNum  is the total 
number of values in indicator i, namely the number of samples in the test dataset. Then, a 
threshold TM  of missing value was set (as shown in Table 2, TM =0.90). If the proportion of 
an indicator was higher than the threshold, the indicator was removed. 
 
 𝑚𝑚𝑖𝑖 =  MissNum 𝑖𝑖

 TotalNum 
 (2) 

 

2.1.3 Single unique value processing 
n addition to missing values, some indicators only have one kind of values in the test dataset. 
The cause of this problem is that the values of some test indicators for the patients are the same.    
For example, all patients in the test dataset may not have used a certain drug in the past. These 
indicators are the same for all patients, regardless of whether the patients are sick or not. 
Therefore, these indicators have no contribution to the prediction of critical illness.  
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To overcome this problem, the proposed model calculated the number of different values 
for all indicators in the datasets. Then the indicators which only have a single unique value 
were removed. 

2.2 Correlation analysis 
Due to the large number of indicators in the test dataset, there will inevitably be some 
correlation between different indicators. However, two indicators with high correlation have 
the same contribution for predicting critical illness. Therefore, it is necessary to remove 
indicators with higher correlation to improve the predictive efficiency of critical illness. 

In addition to continuous test indicators, there are also non-continuous indicators such as 
gender. Therefore, the proposed method analyzed the correlation between all the indicators in 
the datasets by Spearman correlation coefficient. First, the values of the two indicators that 
need to calculate the correlation were sorted, and the order of each value in the sorting was 
recorded. Then the recorded sequences of the two indicators were subtracted to obtain the 
vector d. Finally, the correlation coefficient of the two indicators is calculated according to (3), 
where id  is the value of d at position i, and n is the number of elements in the indicator, namely 
the number of samples in the dataset. To select highly correlated pairs of indicators, a threshold 
was set and the pairs of indicators with a correlation coefficient greater than the threshold was 
selected. Afterward, one of the indicators in each pair of the selected indicators pairs was 
removed. 

 ρ = 1 −
6×� di

2
n

i=1
n×(n2−1)  (3) 

2.3 Importance analysis 
To analyze the correlation between the key indicators and critical illness, the crucial part was 
estimating the importance of each indicator for the prediction of critical illness. The 
importance of the indicator represents how much this indicator contributes to the prediction.  

In this part, the proposed model used LightGBM [26] as the classifier to predict critical 
illness. LightGBM was proposed by Guolin Ke et al. at 2017. It was an implementation of 
Gradient Boosting Decision Tree (GBDT) [28]. This algorithm used two novel techniques: 
Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB), which 
make LightGBM outperform XGBoost [29] and SGB [30] in terms of computational speed 
and memory consumption.  

The objective function of LightGBM in the proposed model is shown as (4), where t is the 
current iteration, n is the total number of samples, iy  is the label of ix , tf  represents the 
CART decision tree in the t iteration, ( )t if x  is the prediction of ix  in the t iteration, L  is the 
loss function and Ω  is the regularization term. 
 
 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡 = � 𝐿𝐿�𝑦𝑦𝑖𝑖 ,𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)�

𝑛𝑛
𝑖𝑖=1 + 𝛺𝛺(𝑓𝑓𝑡𝑡) (4) 

 
Since the model was trained to predict critical illness, the contribution of each feature to 

the model was equivalent to the contribution of each indicator to preoperative critical illness 
prediction. Therefore, the importance of each feature in the model can be taken as the 
importance of each indicator for preoperative prediction of critical illness after training the 
model. In the proposed model, SHAP values was used with an explainer for LightGBM and 
analyze the contribution of indicators to the prediction. Through the explainer, each indicator 
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was assigned an important value. 

2.4 Key indicators selection 
The importance of indicators was used to select the key indicators in this part. Firstly, the 
indicators were sorted in descending order of their importance. Secondly, the importance of 
all indicators was normalized by (5), where iv  is the importance of indicator i, iN  is the 
normalized importance of indicator i, m is the number of indicators in the test dataset. Thirdly, 
the cumulative sum (cumsum) of the normalized indicators was calculated by (6), where kN is 
the cumsum of indicator k.  

Finally, a threshold TS  was set and the indicators with cumsum values lower than the 
threshold was selected as the rough key indicators. The parameters are shown in Table 2. If 
the number of the rough key indicators was more than 25, the rough key indicators were set as 
the key indicator set. If the number of the rough key indicators was less than 25, the first 25 
indicators in the indicator series were set as the key indicators. 
 
 𝑁𝑁𝑖𝑖 = 𝑣𝑣𝑖𝑖

∑ 𝑣𝑣𝑖𝑖𝑚𝑚
𝑖𝑖=1

 (5) 

 
 𝐶𝐶𝑘𝑘 = ∑ 𝑁𝑁𝑖𝑖𝑘𝑘

𝑖𝑖=1   (6) 

3. Experiment and Results 

3.1 Description of the experiment 
The data of two critical illnesses were collected from preoperative and intraoperative clinical 
features and laboratory results of patients in the southwest hospital in China. Diagnoses of 
heart failure and respiratory failure were derived from database entries. After data 
preprocessing, the number of samples for heart failure and respiratory failure is shown in 
Table 1. It is obvious that the number of negative samples is greater than the number of 
positive samples in each type of critical illness. In response to this problem, the downsampling 
method which called random undersampling was used to reduce the number of negative 
samples to the same as the number of positive samples. The parameters of the proposed model 
are shown in Table 2. 

The test dataset was split into training samples and test samples in a ratio of 4:1. The 
indicators of each patient were used as the features of each sample. The labels of patients with 
critical illness are set to 1 and the labels of patients without critical illness are set to 0. In the 
experiment, all the importance of indicators and the results of prediction are taken from the 
average value of the classifiers after 10 runs. 
 

Table 1. Number of samples 

Samples Heart failure Respiratory failure 
Positive samples 609 194 
Negative samples 4223 4223 
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Table 2. Experiment parameters 
Parameters Values 

TM   0.90 

TC  0.98 
I   10 
TS  0.70 

3.2 Results of the experiment 
The number of indicators in the samples of heart failure and respiratory failure are 197 and 
189 respectively. After data preprocessing, the number of indicators removed from the samples 
of heart failure and respiratory failure are 52 and 77 respectively. Fig. 2 shows the normalized 
importance for top 20 indicators of the two critical illnesses. It can be seen that the contribution 
of the top 20 indicators for the prediction of heart failure is lower than the contribution of the 
top 20 indicators for the prediction of respiratory failure. Fig. 3 shows the graph for cumulative 
indicators importance of heart failure and respiratory failure. The number of indicators of the 
heart failure with cumsum values lower than TS  is 39. Thus, the top 39 indicators are used as 
the key indicators of heart failure. The number of the indicators of the respiratory failure with 
cumsum values lower than TS  is 35. Hence, the top 35 indicators are used as the key indicators 
of respiratory failure. The two kinds of key indicators are shown in Table 3. 
 

 
Fig. 2. Normalized importance for top20 indicators 

 

Fig. 3. Cumulative indicators importance of heart failure. The value of the ordinate for the intersection 
of the vertical dotted line and the curve in the three figures is TS . The vertical dotted line divides the 
indicators into two parts, and the left part represents the number of indicators with cumsum values 

lower than TS . 
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Table 3. Key indicators of two critical illnesses 
Critical illness Indicators name 

Heart failure 

Heart Rate_max, ETCO2_min, Age, ARTs_min, Respiratory 
Frequency_min, ABPd_min, SpO2_kurt, NBPm_var, Heart Rate_min, 
NBPm_max, Respiratory Frequency, ALT, Crea, FDP, SpO2_min, 
PULSE_min, NBPm_kurt, CVP_max, ChE, Rectal Temperature_var, 
Heart Rate, CK-MB, Respiratory Frequency_kurt, UA, SpO2, 
NBPs_max, ARTm_min, Respiratory Frequency_max, DBIL, APTT, 
NBPm_mean, Rectal Temperature_kurt, ARTs, Cys-C, HBDH, 
ALB/GLO, Tempture_var, NBPs_kurt, Na 

Respiratory 

ETCO2_min, ABPd_min, ARTm_max, D-Dimer, Heart Rate_max, 
ARTs_min, ETCO2_std, CG, Age, ARTm_min, ChE, PULSE_max, 
DBIL, UA, Eos%, NBPm_skew, PA, NBPd_kurt, Heart Rate, ALT, Crea, 
ETCO2_max, SpO2, NBPs_min, CK-MB, AST, ETCO2_skew, 
CVP_max, CK, PULSE_var, INR, Eos#, ABPd_max, ETCO2_kurt, Hb 

 

To verify the effectiveness of the key indicators, it was used to generate multiple indicators 
of subsets. The number of subsets is the number of indicators in the key indicators. The first 
subset contains only the most important indicators of the key indicators. The second set 
contains the top two most important metrics from the key indicators. And so on, the last set 
contains all indicators in the key indicators. These indicators subsets were used to generate 
data subsets from the test dataset. Then, the data subsets were sorted in ascending order by the 
number of indicators included. The AUC (Area Under Curve) of these subsets in predicting 
critical illness was analyzed in turn by this order. The classifier used in the analysis was 
LightGBM. 

The AUC of prediction using data subsets generated by the key indicators of heart failure 
and respiratory failure are shown in Fig. 4. It can be seen that, with the increase of indicators 
number, the AUC for the prediction of heart failure and respiratory failure keep rising and 
have reached the convergence around 0.96 and 0.92, respectively. Fig. 5 and Fig. 6 show the 
ROC curve and P-R curve for the prediction of heart failure and respiratory failure. For the 
two kinds of critical illnesses, the area under the dotted line is both slightly greater than that 
under the solid line. This indicates that the performance of the prediction using key indicators 
is better than the performance of the prediction using all indicators. 
 

 

Fig. 4. AUC of the data subsets 
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Fig. 5. ROC curve for the prediction of the two critical illnesses. The red curve and green curve are 
the results of prediction using XGBoost and LightGBM respectively. The dotted line and solid line 

represent the results of prediction using all indicators and the key indicators respectively.  

 

 

Fig. 6. P-R curve for the prediction of the two critical illnesses. The red curve and green curve are the 
results of prediction using XGBoost and LightGBM respectively. The dotted line and solid line 

represent the results of prediction using all indicators and the key indicators respectively.  

In order to further verify the effect of the key indicators, LightGBM and XGBoost were 
used as classifiers to analyze the prediction using all indicators and the key indicator 
respectively. The predicted results using all indicators and the key indicators of the two kinds 
of critical illnesses were shown in Table 4 and Table 5. The results in Table 4 and Table 5 
were taken from the 10-fold cross validation. HFA, HFK, RFA and RFK represent all 
indicators of heart failure, key indicators of heart failure, all indicators of respiratory failure 
and key indicators of respiratory failure respectively. The classifiers used in Table 4 and Table 
5 are LightGBM and XGBoost respectively. These results include the accuracy, AUC, 
f1_score, sensitivity and specificity of the prediction for the heart failure and respiratory failure. 
For the heart failure, the experimental results showed that the prediction results using key 
indicators are similar to those using all indicators in accuracy and specificity, and slightly 
higher in AUC, f1_score and sensitive than those using all indicators. For the respiratory, the 
experimental results show that the prediction results using the key indicators are higher than 
the prediction results using all indicators, especially in terms of AUC, f1_score and sensitive. 
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These results suggest that the key indicators extracted from the model can effectively predict 
the critical illness. 
 

Table 4. Predicting results using LightGBM 
Category Accuracy AUC F1_score Sensitive Specificity 

HFA 0.901(0.884, 0.918) 0.963(0.953, 0.973) 0.897(0.880, 0.915) 0.869(0.839, 0.899) 0.934(0.914, 0.953) 

HFK 0.913(0.891, 0.936) 0.969(0.959, 0.980) 0.911(0.889, 0.933) 0.889(0.864, 0.914) 0.939(0.914, 0.964) 

RFA 
0.84(0.79, 

0.89) 

0.91(0.87, 
0.95) 

0.73(0.64, 
0.81) 

0.66(0.56, 
0.75) 

0.93(0.89, 
0.97) 

RFK 
0.86(0.82, 

0.90) 

0.92(0.89, 
0.95) 

0.77(0.70, 
0.83) 

0.71(0.63, 
0.79) 

0.94(0.90, 
0.97) 

 
Table 5. Predicting results using XGBoost 

Category Accuracy AUC F1_score Sensitive Specificity 

HFA 
0.91(0.89, 

0.93) 
0.97(0.96, 

0.97) 
0.91(0.89, 

0.93) 
0.89(0.86, 

0.91) 
0.93(0.91, 

0.96) 

HFK 
0.91(0.89, 

0.94) 
0.97(0.96, 

0.98) 
0.91(0.89, 

0.94) 
0.89(0.86, 

0.92) 
0.94(0.91, 

0.96) 

RFA 
0.83(0.80, 

0.86) 
0.91(0.88, 

0.94) 
0.72(0.67, 

0.77) 
0.66(0.59, 

0.74) 
0.92(0.88, 

0.96) 

RFK 
0.85(0.81, 

0.90) 
0.93(0.90, 

0.95) 
0.76(0.68, 

0.83) 
0.69(0.61, 

0.77) 
0.94(0.90, 

0.98) 

 

4. Discussion 
Machine learning algorithms which use distance measurement are sensitive to data with 
missing values. Therefore, the proposed model in this paper chooses LightGBM to analyze the 
importance of indicators. 

The prediction performance of these critical illnesses using the key indicators extracted by 
the proposed model from the two kinds of critical illnesses are convergent. This shows that the 
key indicators extracted by the model are effective. At the same time, for the samples of heart 
failure and respiratory, the performance of key indicators extracted from the model in the 
prediction of critical illness was slightly higher than the performance of using all indicators. 
These experimental results show that the key indicators can replace all indicators to make an 
effective prediction of critical illness. This indicates that the model successfully removes 
redundant indicators from the dataset and avoids the influence of these redundant indicators 
on the prediction performance of critical illness. 

However, the key indicators extracted from the model still have some shortcomings. To 
ensure the validity of patient samples, the model does not fill in the missing values in the 
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examined data of patients. Although the model has removed some indicators with a lot of 
missing values, there still exist indicators with missing values in the dataset. Due to the 
influence of missing values and other factors of the data, the importance of some indicators 
that should be significant for the critical illness according to doctors' experience may not be 
ranked in the first few in the important analysis of the model. However, some common 
indicators have no missing values, so the importance obtained in the model is higher than the 
actual importance of them. For the model, the future work needs to analyze the impact of 
missing values and other factors on the importance of indicators, combined with the doctor's 
prior knowledge of the importance of the indicators, so that the analysis results obtained by 
the model are closer to their real correlation with critical illness. 

For the model's generalizability, it is possible to obtain different results when using the 
same modeling approach on data from different centers. This can occur due to several factors: 
differences in data distribution, sample size and quality, variations across centers. In the future 
study, the model's generalization and versatility need to be improved through proper data and 
model handling techniques, leading to more consistent predictions across various data centers. 

5. Conclusion 
This paper proposes a key indicator analysis model of postoperative critical illness based on 
machine learning. The model includes four modules: data preprocessing, analysis of the 
correlation in indicators, analysis of the importance for indicators and selection of key 
indicators. The missing value, single value, correlation and importance of indicators are 
counted and calculated in the first three modules, and the key indicators in the data are selected 
based on these results in the lase module. In this paper, two kinds of samples for critical 
illnesses from surgical patients were used in the experiment. The prediction accuracy of 
postoperative critical illness obtained by using the key indicators extracted from the model is 
slightly higher than those obtained by using all the indicators. The experimental results show 
that the model presented in this paper can effectively analyze the correlation of the indicators 
with postoperative critical illnesses and extract the key indicators of postoperative critical 
illnesses. 
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