• Title/Summary/Keyword: Crash test

Search Result 323, Processing Time 0.027 seconds

A Study on the Forming Process of High-strength Aluminum Sheet for Electric Vehicle Heat Exchanger Separator Through Parametric Analysis (인자 분석을 통한 전기차 열교환기 분리판용 고강도 알루미늄 판재 성형 연구)

  • Jung, S.H.;Yang, J.H.;Kim, Y.B.;Lee, K.J.;Kim, B.H.;Lee, J.S.;Bae, G.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.57-63
    • /
    • 2022
  • The current study performed formability analysis of a heat exchanger separator for an electric vehicle to apply a high-strength aluminum sheet based on parametric analysis. Mechanical properties for sheet metal forming simulation were evaluated by tensile test, bulge test, and Nakajima test. Two-stage crash forming was established by considering the mass production process using conventional low-strength aluminum sheets. In this study, FEM for the two-stage forming process was conducted to optimize the corner radius and height for improving the formability. In addition, the possibility of a one-stage forming process application was confirmed through FEM. The prototype of the sample was manufactured as FEM results to validate the parametric analysis. Finally, this result can provide a one-stage forming process design method using the high-strength aluminum sheet for weight reduction of a heat exchanger separator for an electric vehicle.

Analysis of Research Trends for BrIC Injury (BrIC 상해에 대한 경향 분석 및 고찰)

  • Lee, Kihwang;Kim, Kiseok;Yoon, Ilsung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.4
    • /
    • pp.12-17
    • /
    • 2016
  • NHTSA (National Highway Traffic Safety Administration) has offered consumers the vehicle safety information on their car since 1978. NHTSA believes that they contribute auto makers to develop safer vehicle for customers, which will result in even lower numbers of deaths and injuries resulting from motor vehicle crashes. NHTSA has been studied why people are still dying in frontal test despite of the use of many restraints system and they understand that current test does not reflect real world crash data such as oblique and corner impact test. As a result, NHTSA announced that a new test method will be introduced to use of enhanced biofidelic dummy and new crash avoidance technology evaluation from 2019. New and refined injury criteria will be applied to Head / Neck / Chest / Lower Leg. BrIC(Brain Injury Criterion)value in NHTSA test results using THOR dummy from 2014 to 2015 was average 0.91 and 1.24 in driver and passenger dummies. IIHS 64kph SOF test is the most likely to new frontal oblique test in an aspect of offset impact which is being studied by NHTSA. In this paper, we focused on head injury, especially brain injury - BrIC and conducted IIHS 64kph SOF (Small Offset Front) test with Hybrid III dummy to evaluate the injury for BrIC. Based on the test results, these data can be predicted BrIC level and US NCAP rating with current vehicle.

Study on the Numerical Analysis of Crash Impact Test for External Auxiliary Fuel Tank based on ALE (ALE 기반 외부 보조연료탱크 충돌충격시험 수치해석 연구)

  • Kim, Hyun-Gi;Kim, Sungchan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.8-13
    • /
    • 2018
  • A fluid-structure interaction analysis should be performed to evaluate the behavior of the internal fuel and its influence in order to confirm the structural soundness of the fuel tank against external impacts. In the past, fluid-structure interaction analyses have been limited to the obtention of numerical simulation results due to the need for considerable computational resources and excessive computation time. However, recently, computer performance has been dramatically improved, enabling complex numerical analyses such as fluid-structure interaction analysis to be conducted. Lagrangian and Euler coupling methods and Lagrangian based analysis methods are mainly used for fluid-structure interaction analysis. Since both of these methods have their advantages and disadvantages, it is necessary to select the more appropriate one when conducting a numerical analysis. In this study, a numerical analysis of a crash impact test for a fuel tank is performed using ALE. The purpose of the numerical analysis is to estimate the possibility of failure of the fuel tank mounted inside the container when it is subjected to a crash impact. As a result of the numerical analysis, the fluid behavior inside the fuel tank is investigated and the stress generated in the fuel tank and the container structure is calculated, thereby enabling the possibility of fuel tank failure and leakage of the internal fluid to be evaluated.

Test Level of Domestic Concrete Barrier (국내 콘크리트 방호벽의 등급 고찰)

  • Jeon, Se-Jin;Choi, Myoung-Sun;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.113-116
    • /
    • 2008
  • According to a domestic provision, test levels of the barrier are divided into seven categories(SB1 to SB7) and the corresponding crash conditions are specified. Meanwhile, standard types of concrete barriers with different dimensions have been constructed nation wide. Some studies aimed at finding a proper test level of each type of the concrete barrier have been carried out, but the reliable and consistent results have not been fully established yet. The purpose of this study is to find out the test level corresponding to the concrete barrier of type-2 through static test. AASHTO LRFD was referred to for the loading pattern and a magnitude of the load that simulate a vehicle crash assumed. The test results show that the ultimate strength of the type-2 satisfies the load level required for SB5. However, it seems that the type-2 does not comply with SB6, showing some differences in results from previous analytical studies. In order to take advantage of the static test in establishing the test level of the domestic barrier, more detailed provisions should be specified.

  • PDF

A Study on the Rollover Behavior of SUV and Collision Velocity Prediction using PC-Crash Program (PC-Crash를 이용한 SUV의 전복사고 거동 및 충돌속도 예측에 관한 연구)

  • Choi, Yong-Soon;Baek, Se-Ryong;Jung, Jong-Kil;Cho, Jeong-Kwon;Yoon, Jun-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.227-235
    • /
    • 2018
  • Along with the recent increase in traffic volume of vehicles, accidents involving rollover of vehicles have been rapidly increased, resulting in an increase casualties. And to prevent this, various technologies such as vehicle crash test equipment and analysis program development have been advanced. In this study, the applied vehicle model is FORD EXPLORER model, and PC-Crash program for vehicle collision analysis is used to predict the rollover accident behavior of SUV and the collision velocity. Compared with the actual rollover behavior of SUV through the FMVSS No 208 regulations, the analysis results showed similar results, the characteristics of the collision velocity and roll angle showed a tendency that the error rate slightly increased after 1000 msec. Then, as a result of considering using the database of NHTSA, it is shown that the rollover accident occur most frequently in the range of the collision velocity of 15~77 km/h and the collision angle of $22{\sim}74^{\circ}$. And it is possible to estimate the vehicle speed and collision time when the vehicle roof is broken by reconstructing the vehicle starting position, the roof failure position and the stop position by applying the actual accident case.

Characteristics and Influencing Factors of Red Light Running (RLR) Crashes (신호위반사고의 특성과 영향요인 분석)

  • Park, Jeong Soon;Jung, Yong Il;Kim, Yun Hwan
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.3
    • /
    • pp.198-206
    • /
    • 2014
  • According to the statistics of the National Police Agency, red light running (RLR) crashes represent a significant safety issue throughout Korea. This study deals with the RLR crashes occurred at signalized intersections in Cheongju. The objectives of this study are to comparatively analyze the characteristics of between RLR crashes and the Non-RLR crashes, and to find out factors using a Binary Logistic Regression(BLR) model. In pursuing the above, the study gives particular attentions to testing the differences between the above two groups with the data of 2,246 RLR/ 3,884 Non-RLR crashes (2007-2011). The main results are as follows. First, many RLR crashes were occurred in the nighttime and in going straight. Second, the difference between RLR and Non-RLR crashes were clearly defined by crash type, maneuver of vehicle before crash, age of driver (30s, 50s), alcohol use and accident pattern. Finally, a statistically significant model (Hosmer and Lemeshow test : 7.052, p-value : 0.531) was developed through the BLR model.

Study on Improvement Method and Performance Analysis About Occupied Existing Roadside Barriers in Expressway (고속도로에서 공용중인 노측용 차량방호울타리의 성능분석 및 개선방안에 관한 연구)

  • Joo, Jae-Woong;Jang, Dae-Young;Ha, Jong-Moon;Park, Je-Jin
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.9-17
    • /
    • 2011
  • It is possible to set up the Roadside Barrier which is suitable for Performance Evaluation Criteria by domestic standard. But a number of section of expressway roadside have old guardrail that was installed before reform the guideline. These poor performance guardrails threaten driver's life. There is lots of difficult problem to change old guardrails that are installed 2,777km in expressway of whole road side at the same time. Especially budget problem. The purpose of study is to develop performance improvement guardrails by the minimum reinforcement. In this study, guardrail improvement method(SB1, 3, 5 grade) is developed through crash simulation using LS-DYNA 3D and vehicle crash test. And it's expected not only to decrease of collision accident but to increase safe level. Of course one thing that can't be missing is to reduce a lot of budget of guardrail change.

A Study on the Development of Child Human Model for Crashworthiness Analysis (충돌해석용 유아 인체모델 개발에 관한 연구)

  • Kim Heon Young;Kim Sang Bum;Kim Joon Sik;Lee In Hyeok;Lee Jin Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.182-191
    • /
    • 2004
  • This study is focused on the development of a child human model, which is composed of skin, skeleton, joints and muscle, etc. The dimension of child outer skin is referred to anthropometric data from KRISS (Korea Research Institute of Standards and Science). The positions of joint and mass properties of body segments are calculated from ATB(Articulated Total Body) program, GEBOD. The properties of bones and muscles are obtained by the way of scaling from adult human model. To verify the developed human model, ROM simulation and sled test is conducted. Developed human model can be effectively applied to the evaluation of human injury in crash situation and development of child restraint system. The explicit finite element program $PAM-CRASH^TM$ was used to simulate six-year old child human model.

Review on the Modification of Carbody Structure to meet the Collision Condition Applied for Railway Vehicles (철도차량의 충돌 조건 만족을 위한 차체 프레임 개선 사례에 대한 고찰)

  • Park, Jin-Soo;Kim, Ku-Sik
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1236-1242
    • /
    • 2010
  • Currently in design and manufacturing of railway train overseas markets, criteria for a collision condition between vehicles is noted in design specification. In the event of a train crash, it can be verified by crashworthiness analysis or an actual crash test for car's performance to keep the safety of passengers and to minimize the effect of damaged for vehicles. In this paper, it is described for carbody structure to meet the allowable condition in collision analysis through improvement of shape, position and arrangement for carbody frame. This report describes the shape of end frame for carbody structure and the results of analysis applied to actual cases for overseas.

  • PDF