• 제목/요약/키워드: Crash Strength

검색결과 88건 처리시간 0.028초

TRIP형 고장력강판의 부품적용 기술개발 (Technical Development using High Strength Steel of mP Type on Automobile Parts)

  • 류성지;이상제;이규현;이문용
    • Journal of Welding and Joining
    • /
    • 제20권3호
    • /
    • pp.46-53
    • /
    • 2002
  • The expolitation of substitute material and new manufacturing technology of the automobile body panel for next generation cars have been steadily professed by advanced automobile companies. High strength steel of TRIP (Transformation of Induced Plasticity) type is developed in response to demands about crash safety and high strength of automobile. In this study, basic technologies can fix up problems occurring on the mass production and applied to the other forming methods will be prepared through rasping a property of TRIP material.

고장력강 적용을 통한 프런트 사이드 멤버의 경량화 (Weight Reduction of Front Side Member with High Strength Steel)

  • 이상곤;최창현;신철수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1487-1490
    • /
    • 2004
  • In this study, the crash analysis was carried out to evaluate the influence of steel sheet grade and thickness on weight reduction and crash characteristics for front side member which had an important role of absorbing the impact energy during front and side impact. In order to achieve the aim of this study the reverse engineering was applied to obtain 3D model of front side member from BIW for the FE simulation. In the result, the crashworthiness of front side member is considerably improved with steel sheet strength and thickness increase. Also, the weight reduction in automotive parts for the improvement of the fuel efficiency can be easily achieved with applying high strength steel without deterioration of crashworthiness.

  • PDF

고강도 강판 적용에 의한 차체 프런트 사이드 멤버의 경량화에 관한 연구 (A Study on Weight Reduction of Front Side Member with Application of High Strength Steel)

  • 이상곤;고대철;김병민
    • 한국정밀공학회지
    • /
    • 제23권9호
    • /
    • pp.149-155
    • /
    • 2006
  • This paper is concerned with the weight reduction of front side member of a vehicle considering the application of high strength steel sheet. The influence of steel sheet grade and thickness on the energy absorption, impact load and deformed shape of front side member is investigated by using reverse engineering and FE-analysis. The reverse engineering is applied to obtain 3D model of front side member from B.I.W for the FE simulation. FE analysis is carried out with commercial crash analysis SW PAM-CRASH. The crashworthiness of front side member is considerably improved with steel sheet strength and thickness increase. From the result of this study the weight reduction in automotive parts for the improvement of the fuel efficiency can be easily achieved with replacing high strength steel without deterioration of crashworthiness.

Performance evaluation of steel and composite bridge safety barriers by vehicle crash simulation

  • Thai, Huu-Tai
    • Interaction and multiscale mechanics
    • /
    • 제3권4호
    • /
    • pp.405-414
    • /
    • 2010
  • The performance of full-scale steel and composite bridge safety barriers under vehicle crash is evaluated by using the nonlinear explicit finite element code LS-DYNA. Two types of vehicles used in this study are passenger car and truck, and the performance criteria considered include structural strength and deformation, occupant protection, and post-crash vehicle behavior. It can be concluded that the composite safety barrier satisfies all performance criteria of vehicle crash. Although the steel safety barrier satisfies the performance criteria of occupant protection and post-crash vehicle behavior, it fails to satisfy the performance criterion of deformation. In all performance evaluations, the composite safety barrier exhibits a superior performance in comparing with the steel safety barrier.

알루미늄 폼이 충전된 충돌부재의 충격흡수 성능 (Impact Performance of a Crash Member Filled with Aluminum Foam)

  • 김낙현;김지훈;이종국;김대용
    • 소성∙가공
    • /
    • 제20권8호
    • /
    • pp.555-561
    • /
    • 2011
  • The energy absorbing characteristics of crash members in a car collision play an important role in controlling the amount of damage to the passenger compartment. Crash members filled with aluminum foam are expected to have reduced mass while maintaining or even improving the crashworthiness compared to the conventional hollow-beam types. Finite element simulations are carried out in the present work to assess the improvement of crashworthiness by the use of aluminum foam fillers. The numerical results agreed well with experimental measurements. Parametric studies are conducted to analyze the effect of impact velocity, weld strength, and initiator on the crash response.

방호울타리의 충돌해석에 관한 연구 (A Study on The Crash Analysis of Guard Rail)

  • 민한기;정종안;김택;국진선
    • 한국생산제조학회지
    • /
    • 제20권5호
    • /
    • pp.598-604
    • /
    • 2011
  • In guard rail crashes, the development of guard rail structure to ensure the maintenance of safety for passengers is very important. So, this paper focuses on understanding the possibility of efficient structural development considering crash strength of guard rail through computer simulation using the commercial code, LS-DYNA3D at the initial stage of guard rail development. For this study, guard rail structure was modeled using shell elements to represent major structural members and passenger car was modeled using plate elements of simple shape to do not have the drawing, and impact boundary conditions required by regulation was applied. In order to confirm the validity of the computational results, they were compared with the test results.

복합조직강의 고속인장 결과를 이용한 컴퓨터 전산모사와 실제 충돌시험 결과와의 비교 연구 (A Comparative Study of Computer Simulation using High-Speed Tensile Test Results with Actual Crash Test Results of DP Steels)

  • 방형진;최일동;강성규;문만빈
    • 대한금속재료학회지
    • /
    • 제50권12호
    • /
    • pp.873-882
    • /
    • 2012
  • Dual Phase (DP) steel which has a soft ferrite phase and a hard martensite phase reveals both high strength and high ductility and has received increased attention for use in automotive applications. To conduct structural analysis to verify vehicle safety, highly credible experimental results are required. In this study, tensile tests were performed in a strain rate range from $10^{-4}/s$ to 300/s for Sink Roll-Less (SRL) hot-dip metal coated sheets. Collision properties were estimated through simulation by LS-DYNA using the stress-strain curve obtained from the tensile test. The simulation results were compared with the actual crash test results to confirm the credibility of the simulation. In addition, a tensile test and a crash test with 2% prestrain and a baking (PB) specimen were evaluated identically because automotive steel is used after forming and painting. The mechanical behaviors were improved with an increasing strain rate regardless of the PB treatment. Thus, plastic deformation with an appropriate strain rate is expected to result in better formability and crash characteristics than plastic deformation with a static strain rate. The ultimate tensile strength (UTS) and absorbed energy up to 10% strain were improved even though the total elongation decreased after PB treatment, The results of the experimental crash test and computer simulation were slightly different but generally, a similar propensity was seen.

자동차용 라운드 리클라이너 정적/동적 구조 강도 평가 (Evaluation of Static/Dynamic Structural Strength for Automotive Round Recliner)

  • 이동재;박창수;이경택;김상범;김헌영
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.140-146
    • /
    • 2005
  • This study presents the development of a round recliner using the finite element method. That reduces the number of test repeating times and gives an information about stiffness. A simulation model of round recliner mounting seat module and tooth strength simulation are established using a PAM-CRASH and ABAQUS. With the optimization of gear profile, structural strength design of round recliner was achieved. The round recliner seat module simulation, structure strength simulation and a crash safety are requested by FMVSS test. Solution of round recliner optimum variable study and design problem are searched for round recliner stress, deformation and application. Also an examination of safety is made.

충돌 시뮬레이션을 활용한 강재-FRP 합성 방호울타리의 성능평가 (Performance Analysis of Steel-FRP Composite Safety Barrier by Vehicle Crash Simulation)

  • 이민철;권기영;김승억
    • 복합신소재구조학회 논문집
    • /
    • 제2권4호
    • /
    • pp.11-18
    • /
    • 2011
  • 본 논문에서는 컴퓨터 시뮬레이션을 통해 강재-FRP 합성 교량용 방호울타리의 성능을 분석하였다. FRP는 Surface veil, DB 그리고 Roving 섬유로 구성하였다. FRP의 적층을 고려하기 위해 LS-DYNA에서 제공하는 재료모델 MAT58을 사용하였다. 강관과 FRP의 접촉조건을 고려하기 위해 Spot weld 옵션을 사용하였다. 실차충돌 실무 업무편람에 따라 구조적 강도성능, 탑승자 보호성능 및 충돌 후 차량의 거동에 대한 성능평가를 실시하였다. 강재-FRP 합성 방호 울타리는 성능평가를 만족하였다.

한국형 고속틸팅열차의 전두부 충돌특성 시뮬레이션 (Crash Simulation on the Front End Structure of Korean Tilting Train eXpress(TTX))

  • 김승록;권태수;정현승;유원희;구정서
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.322-325
    • /
    • 2005
  • TTX(Tilting Train eXpress) is being designed for improving the speed of conventional railway. The purpose of this study is to evaluate energy absorbing capacity and driver's survivability for a design candidate of the front end structure of TTX. A FE model with honeycomb block, under frame, and body frame is generated for crash simulation. Based on a level-crossing accident scenario, numerical simulation is performed using LS-DYNA. The results of crash analysis show that strength improvement of the current front end structure design candidate is needed to ensure driver safety.

  • PDF