• Title/Summary/Keyword: Crane Design

Search Result 390, Processing Time 0.021 seconds

A Study on Tracking Control of an Industrial Overhead Crane Using Sliding Mode Controller (슬라이딩모드 제어기를 이용한 산업용 천정크레인의 추종제어에 관한 연구)

  • Park, Byung-Suk;Yoon, Ji-Sup;Kang, E-Sok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.1022-1032
    • /
    • 2000
  • We propose a sliding mode controller tracking the states of a time-varying reference model. The reference model generates the desired trajectories of the states, and the sliding mode controller regulates robustly the errors between the desired states and the measured states. We apply this controller to the overhead crane. Its reference model generates the trajectories of the damped-out swing angle and the swing angular velocity to suppress the swinging motion caused by the acceleration and the deceleration of crane transportation. Also, this model generates the desired trajectories of the position and velocity of the crane. The crane model is identified from the experimental data using an orthogonal function. Kalman filtering is applied to estimate the crane states. The designed controller is simulated on a computer and is tested through a 2-ton industrial overhead crane using the vector-controlled servo motor system. It is verified that, from the simulated and experimental results, the sliding mode controller tracking a time-varying reference model works well.

  • PDF

Comparison of finite element analysis with wind tunnel test on stability of a container crane (컨테이너 크레인의 안정성에 대한 풍동실험과 유한요소해석의 비교)

  • Han, D.S.;Lee, S.W.;Han, G.J.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.29-35
    • /
    • 2008
  • This study is conducted to provide the proper analysis method to evaluate the stability of a container crane under wind load. Two analysis method, namely structure analysis and fluid-structure interaction, are adopted to evaluate the stability of a container crane in this investigation. To evaluate the effect of wind load on the stability of the crane, 50-ton class container crane widely used in container terminals is adopted for analysis model and 19-values are considered for wind direction as design parameter. We conduct structure analysis and fluid-structure interaction for a container crane with respect to the wind direction using ANSYS and CFX. Then we compare the uplift forces yielded from two analysis with it yielded from wind tunnel test. The results are as follows: 1) A correlation coefficient between structure analysis and wind tunnel test is lower than 0.65(as $0.29{\sim}0.57$), but between fluid-structure interaction and wind tunnel test is higher than 0.65(as $0.78{\sim}0.86$). 2) There is low correlation between structure analysis and wind tunnel test but very high correlation between fluid-structure interaction and wind tunnel test.

  • PDF

The study on the safety inspection system model of the tower crane a construction site in Korea (국내 건설현장 타워크레인 안전진단 관리시스템 모델에 관한 연구)

  • Yeon, In-Soo;Seo, Jang-Hoon;Kang, Kyeong-Sik
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2006.11a
    • /
    • pp.499-507
    • /
    • 2006
  • The tower cranes are widely used in very useful construction machine the sites of constructing high-structure and have a structural sensitiveness. Therefore, the accidents have often happened due to the deficiency of laborer's understanding md lack of safety of structure. Till now, as we have research and studied above, we can properly protect accidents by construction equipments particularly crane as well as most disasters which occur frequently in construction site. The goal of this study is the safety inspection model of the tower crane a construction site, which preventible the collapse accident of tower crane which is constructed by using the correcting frame. In order to accomplish the goal of this study, the field survey, the reference investigation and the structure analysis were performed for the collapse accident of tower nine using the correcting data. This study will be proposed a build-up solutions about operating and release of safety constructions and researched about software safety estimation. Also, preventing safety problems of Tower Crane Construction site as applying safety estimation program and laws and regulations. As a result, The real time control of tower crane inspection system is implemented by to illustrate the application of the adopted optimal design model.

  • PDF

Anti-Sway Control of a Jib Crane Using Time Optimal Control (시간최적제어를 이용한 지비크레인의 흔들림제어)

  • KANG MIN-WOO;HONG KEUM-SHIK
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.87-94
    • /
    • 2005
  • This paper investigates the constant-level luffing and time optimal control of jib cranes. The constant-level luffing, which is the sustainment of the load at a constant height during luffing, is achieved by analyzing the kinematic relationship between the angular displacement of a boom and that of the main hoist motor of a jib crane. Under the assumption that the main body of the crane does not rotate, the equations of motion of the boom are derived using Newton's Second Law. The dynamic equations for the crane system are highly nonlinear; therefore, they are linearized under the small angular motion of the load to apply linear control theory. This paper investigates the time optimal control from the perspective of no-sway at a target point. A stepped velocity pattern is used to design the moving path of the jib crane. Simulation results demonstrate the effectiveness of the time optimal control, in terms of anti-sway motion of the load, while luffing the crane.

A Study on the Estimation of the Structural Stability of a Container Crane According to the Change of the Boom Shape using Wind Tunnel Test

  • Lee, Seong-Wook;Han, Dong-Seop;Han, Geun-Jo;Kim, Tae-Hyung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.87-94
    • /
    • 2006
  • In this study we carried out to analyze the effect of wind load on the structural stability of a container crane according to the change of the boom shape using wind tunnel test and provided a container crane designer with data which can be used in a wind resistance design of a container crane assuming that a wind load at 75m/s wind velocity is applied on a container crane. Data acquisition conditions for this experiment were established in accordance with the similarity. The scale of a container crane dimension, wind velocity and time were chosen as 1/200, 1/13.3 and 1/15. And this experiment was implemented in an Eiffel type atmospheric boundary-layer wind tunnel with $11.52m^2$ cross-section area. Each directional drag and overturning moment coefficients were investigated and uplift forces at each supporting point due to the wind load were analyzed.

  • PDF

Oscillation Motion Control of Gantry Crane System with Arm for Anti-Sway (Anti-sway용 암을 가진 겐트리 크레인의 흔들림저감 제어)

  • Kim, H.S.;Park, H.S.;Lee, D.H.;Park, J.H.;Kim, S.B.
    • Journal of Power System Engineering
    • /
    • v.2 no.1
    • /
    • pp.73-79
    • /
    • 1998
  • In practical fields, the sway of crane systems leads to extra stress to the crane structure during the transporting operation and it is in close connection with its life. Usually, when we operate the cranes with high speed and manual control, the sway motion is irreducible. In this paper, a new type of crane system is proposed to avoid the irreducible sway of the crane systems. The proposed system is composed of mechanical arm with function of anti-sway based on conventional line system. By the anti-sway arm, we can realize to prevent the sway of the container box but cannot avoid the oscillation for the overall body of the crane. So, a controller design method to solve the above stated problem must be considered. The problem is solved by adopting the velocity pattern control methods of trapezoidal and curve types and its effectiveness is proved through experimental results.

  • PDF

The Structural Stability Analysis of an Articulation Type Container Crane Using Wind Tunnel Test (풍동실험을 이용한 관절형 컨테이너 크레인의 구조 안정성 해석)

  • Lee S.W.;Shim J.J.;Han G.J.;Kim T.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.838-841
    • /
    • 2005
  • This study was carried out to analyze the effect of wind load on the structural stability of a 50ton articulation type container crane using wind tunnel test and provide a container crane designer with data which can be used in a wind resistance design of an articulation type container crane assuming that a wind load 75m/s wind velocity is applied in an articulation type container crane. Data acquisition conditions for this experiment were established in accordance with the similarity. The scale of an articulation type container crane dimension, wind velocity and time were chosen as 1/200, 1/13.3 and 1/15. And this experiment was implemented in an Eiffel type atmospheric boundary layer wind tunnel with $11.52m^2$ cross-section area. Each directional drag and overturning moment coefficients were investigated and uplift forces at each supporting point due to the wind load were analyzed.

  • PDF

Wind-induced vibration fragility of outer-attached tower crane to super-tall buildings: A case study

  • Lu, Yi;Zhang, Luo;He, Zheng;Feng, Fan;Pan, Feng
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.405-421
    • /
    • 2021
  • To gain insight into the wind-induced safety concerns associated with attached tower cranes during the construction of super-tall buildings, a 606 m level frame-core tube super-tall building is selected to investigate the wind-induced vibration response and fragility of an outer-attached tower crane at all stages of construction. The wind velocity time history samples are artificially generated and used to perform dynamic response analyses of the crane to observe the effects of wind velocity and wind direction under its working and non-working resting state. The adverse effects of the relative displacement response at different connection supports are also identified. The wind-resistant fragility curves of the crane are obtained by introducing the concept of incremental dynamic analysis. The results from the investigation indicate that a large relative displacement between the supports can substantially amplify the response of the crane at high levels. Such an effect becomes more serious when the lifting arm is perpendicular to the plane of the connection supports. The flexibility of super-tall buildings should be considered in the design of outer-attached tower cranes, especially for anchorage systems. Fragility analysis can be used to specify the maximum appropriate height of the tower crane for each performance level.

Robust Adaptive Control of 3D Crane Systems with Uncertainty (불확실성 요소를 갖는 3D 크레인 시스템의 강인적응제어)

  • Jeong, Sang-Chul;Kim, Dong-Won;Lee, Hyung-Ki;Cho, Hyun-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.102-108
    • /
    • 2008
  • This paper presents robust and adaptive control method for complicated three dimensional crane systems with uncertain effect. We consider an overhead crane system in which a trolly located on its top is moved to x- and y-axis independently. We first approximate the complicated crane model through linearization approach to simply construct a PD control and then design an adaptive control system for compensating modeling error and control deviation which is feasibly occurred due to system perturbation in practice. An adaptive control scheme is analytically derived using Lyapunov stability theory for a given bound of system perturbation. We accomplish numerical simulation for evaluation of the proposed control system and demonstrate its superiority comparing with the traditional control strategy.

Design of Container Crane Controller for High Productivity in Cargo Handling (하역생산성 향상을 위한 컨테이너 크레인의 제어기 설계)

  • 최재준
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.28-35
    • /
    • 2000
  • For the merit of a container in transportation and cargo handling the amount of container freight has been continuously on the increase. On the other hand container crane had got the bottle neck in cargo handling due to low productivity so that freight congestion had been often occurred at ports. in this paper A mathematical model for container crane system is represented a method for designing a fuzzy controller of container crane system for high productivity in cargo handling is presented. The fuzzy controller is compared with other optimal controller at the same condition. in the computer simulation the fuzzy controller obtained an excellent response to reference change better than the optimal controller. For disturbance such as a strong storm and parameter change due to change of cargo weight the result was also stable and robust than the optimal controller.

  • PDF