• 제목/요약/키워드: Crane Control Systems

검색결과 150건 처리시간 0.038초

A Feedback Linearization Control of Container Cranes: Varying Rope Length

  • Park, Hahn;Chwa, Dong-Kyoung;Hong, Keum-Shik
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권4호
    • /
    • pp.379-387
    • /
    • 2007
  • In this paper, a nonlinear anti-sway controller for container cranes with load hoisting is investigated. The considered container crane involves a planar motion in conjunction with a hoisting motion. The control inputs are two (trolley and hoisting forces), whereas the variables to be controlled are three (trolley position, hoisting rope length, and sway angle). A novel feedback linearization control law provides a simultaneous trolley-position regulation, sway suppression, and load hoisting control. The performance of the closed loop system is shown to be satisfactory in the presence of disturbances at the payload and rope length variations. The advantage of the proposed control law lies in the full incorporation of the nonlinear dynamics by partial feedback linearization. The uniform asymptotic stability of the closed-loop system is assured irrespective of variations of the rope length. Simulation and experimental results are compared and discussed.

Application of Coefficient Diagram Method for Multivariable Control of Overhead Crane System

  • Tantaworrasilp, A.;Benjanarasuth, T.;Ngamwiwit, J.;Komine, N.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2240-2245
    • /
    • 2003
  • In this paper, the controller design by coefficient diagram method (CDM) for controlling the trolley position, load-swing angle and hoisting rope length of the overhead crane system simultaneously is proposed. The overhead crane system is a MIMO system consisting of two inputs and three outputs. Its mathematical model is nonlinear with coupling characteristics. This nonlinear model can be approximated to obtain a linear model where the first input mainly affects the trolley position and the load-swing angle while the second input mainly affects the hoisting rope length. In order to utilize the CDM concept for assigning the controllers, namely PID, PD and PI controllers separately, the model is approximated to be three transfer functions in accordance with trolley position, the load-swing angle and the hoisting rope length controls respectively. The satisfied performances of the overhead crane system controlled by the these controllers and fast rejection of the disturbance effect occurred at the trolley position are shown by simulation and experimental results.

  • PDF

Parameters Identification of Gantry Crane By Using ANSYS

  • Kim, Hwan-Seong;Nguyen, Tuong-Long
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.62.5-62
    • /
    • 2002
  • The main purpose of this paper is to identify the important parameters and to examine their relations to one another while gantry crane structure was modeled. The important elements of the structural analysis are included, such as the stiffness matrix and its relations to the degrees of freedom, the displacement, and frequency responses. To investigate these relations, the parametric modeling of a dynamic system is solved by using the finite element method (ANSYS-Program). Furthermore, EXPRESS schema and C-FAR (change favorable representation) are described how to change the frame length of gantry crane which influences other elements. Since this relationship is established, the results may...

  • PDF

자동화 컨테이너 터미널을 위한 컨테이너 트랜스퍼 크레인의 안티 스웨이 시스템;Part I - 기본 구조, 모델링, 제어 (Anti-Sway System of Container Transfer Crane for Automated Container Terminal : Part I - Basic Structure, Modeling and Control)

  • 박찬훈;김두형;신영재;박경택
    • 제어로봇시스템학회논문지
    • /
    • 제10권11호
    • /
    • pp.1112-1118
    • /
    • 2004
  • Automated container terminals have been developed over the world years and many countries are interested in them because the amount of containers exported or imported is rapidly increasing. The conventional container terminals were not designed to handle this kind of heavily many containers. They would face many structural problems soon or later, although they have been managed to do well so far. One of the most important things in automated container terminal is the handing equipments able to transfer many containers efficiently. Those are maybe automated transfer cranes, automatic guided vehicles and automated quay-side cranes. The word 'automated' means the equipment is operated without drivers and those equipments are able to work without any interruption in working schedule. Through the researches on the conventional transfer cranes, we decided that the structure of conventional transfer cranes is not proper in automated container terminal and it is not possible to handle so many container in limited time. Therefore we have been studying on the proper structure of the automated container for past several years and a new type of transfer cranes has been developed. Design concept and control method of the new crane are introduced and experimental results are presented in this paper.his paper.

Vibration Suppression of Moving Suspended Systems by Wave Absorption Control

  • Saigo, Muneharu;Nam, Dong-Ho
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • 제6권1호
    • /
    • pp.30-37
    • /
    • 2003
  • This paper describes vibration control of a suspended system using wave absorption method. A moving multiple-pendulum system and a moving wire-and-load system are treated. The wire-and-load system is extended to a model crane system that has a motor system to roll up and down the suspended mass like a real crane. The same program with different parameter values controls these three systems. Both numerical simulation and experiment have been conducted, and the present control method has shown to be quite effective.

  • PDF

Multiobjective fuzzy control system using reinforcement learning

  • Oh, Kang-Dong;Bien Zeungnam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.110.4-110
    • /
    • 2002
  • In practical control area, there are many examples with multiple objectives which may conflict or compete with each other like overhead crane control, automatic train operation, and refuse incinerator plant control, etc. These kinds of control problems are called multiobjective control problems, where it is difficult to provide the desired performance with control strategies based on single-objective optimization. Because the conventional control theories usually treat the control problem as the single objective optimization problem , the methods are not adequate to treat the multiobjective control problems. Particularly, in case of large scale systems or ill-defined systems, the multiple obj..

  • PDF

크레인의 모니터링 기법에 관한 연구 (A Study for Monitoring Method of Crane)

  • 김영호;이영일;박종웅;배종일;김영식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.206-206
    • /
    • 2000
  • This paper is ai ed to handle quick work for all the workers and to improve the productivity by adding more effective content in Crane Monitoring System. The contributing proportion of the increase of port productivity is more increasing concerning not only the port industry, but also all the informations of container crane which is the representative equipment by the rapid increase of the volume of freight of port. The basic of rapid service is the improvement of the productivity, the information of operation as to the productivity of crane for the quick handling within yard and especially the informations of breakdown and to handle breakdown as soon as possible has a great enect on the increase of productivity.

  • PDF

천정크레인 부하의 위치 및 흔들림 제어 (Position and swing angle control for loads of overhead cranes)

  • 이호훈;조성근
    • 대한기계학회논문집A
    • /
    • 제21권2호
    • /
    • pp.297-304
    • /
    • 1997
  • This paper presents a systematic design method of an anti-swing control law for overhead cranes. A velocity servo system for the trolley of a crane is designed based on the dynamics of the trolley and its load. The velocity servo system compensates for the effects of load swing on the trolley dynamics so that the velocity servo is independent of load swing. The velocity servo system is used for the design of a position servo system for the trolley via the loop shaping method. The position servo system and the swing dynamics of the load are then used to design an angle control system for load swing based on the root locus method. The combined position servo and the angle control systems constitute the overall control system. In the presence of low frequency disturbances, the proposed control law guarantees accurate position control for the trolley and fast damping for load swing. Furthermore, the performance of the proposed control law is independent of the mass of the load. Experimental results on a prototype crane show the effectiveness of the proposed anti-swing control law.

Design of Reduced Order H2 Controller;Application to Anti-Sway-Control of a Traveling Crane

  • Kodani, Nariyuki;Ouchi, Shigeto;Todaka, Yuji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1754-1757
    • /
    • 2004
  • For the anti-sway control of traveling cranes, there are several solutions, i.e., by fuzzy control, by optimal control theory, etc. Each of them is reported to be effective. And, H infinity control and $H_2$ control can be also used. However, the full order observer which estimates all states in the controlled object is used in these methods. Therefore, the orders of these controllers are apt to be higher than that of the optimal controller, etc. Because the conventional H2 controller which minimizes $H_2$ norm consists of two parts, that is: feedback gains which make the controlled object stable and the full order observer which estimate those states. If the minimal order observer is used instead of the full order one, the order of the controller can be reduced. In this paper, we propose a new method based on the minimalization of $H_2$ norm using the minimal order observer. And, we confirm the effect of a new $H_2$ controller in the experiments of the anti-sway control of a traveling crane.

  • PDF

제약조건을 가지는 컨테이너 크레인 시스템용 최적 상태궤환 제어기 설계 (Design of an Optimal State Feedback Controller for Container Crane Systems with Constraints)

  • 주상래;진강규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권2호
    • /
    • pp.50-56
    • /
    • 2000
  • This paper presents the design of an optimal state feedback controller for container cranes under some design specifications. To do this, the nonlinear equation of a container crane system is linearized and then augmented to eliminate the steady-state error, and some constraints are derived from the design specifications. Designing the controller involves a constrained optimization problem which classical gradient-based methods have difficulties in handling. Therefore, a real-coding genetic algorithm incorporating the penalty strategy is used. The responses of the proposed control system are compared with those of the unconstrained optimal control system to illustrate the efficiency.

  • PDF