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Abstract: For the anti-sway control of traveling cranes, there are several solutions, i.e., by fuzzy control, by optimal control
theory, etc. Each of them is reported to be effective. And, H infinity control and H, control can be also used. However, the full
order observer which estimates all states in the controlled object is used in these methods. Therefore, the orders of these controllers
are apt to be higher than that of the optimal controller, etc. Because the conventional H, controller which minimizes H, norm
consists of two parts, that is: feedback gains which make the controlled object stable and the full order observer which estimate
those states. If the minimal order observer is used instead of the full order one, the order of the controller can be reduced.

In this paper, we propose a new method based on the minimalization of H, norm using the minimal order observer. And, we
confirm the effect of a new H, controller in the experiments of the anti-sway control of a traveling crane.
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1. INTRODUCTION

There are several methods of controlling the sway of
traveling cranes, such as fuzzy control! and optimal control™,
each of which is reported to be effective. The development
of a simple method for designing control systems is important
for field engineers. In a control system, the controller is
generally designed by using a mathematical model of the
controlled object. However, it is impossible to make a model
which accurately expresses the characteristics of the controlled
object. Therefore, the controller obtained by this method is not
always appropriate for actual systems, even if it is valid
theoretically. That is: the models for actual systems have
always uncertainties. H infinity control or H2 control is well
known as the method which overcome such uncertainties.
However, the conventional H infinity control or H2 control are
made on the basis of the mathematical models and the full
order observers. As a result, the obtained control system has a
redundancy. It is considered that we use the minimal order
observer for the control system design instead of the full order
one.

In this paper, the control system is designed by using an H,
controller reduced by the minimal order observer, which is a
new approach that we propose. The results of simulations and
experiments show that this system has good performance.

2. REDUCED ORDER H2 CONTROL
2.1 Minimal order observer
Let us consider a system such as
X=Ax+ Bw+ Byu
y=Cyx+Dyw €))
z=Cx+Du
For the controlled object shown in the above equation, we

apply a transfer matrix as equation (1) based on the design
method of Gopinath

s=[c, c*” (2)
where C * is chosen so that S is full rank.
Putting X := Sx, we obtain
¥=Ax+ Elw + Ezu
y= sz +Dyw 3)
z= C_’lx +D,u
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where
A=545"= An An
A21 A22
— B, = B
B =SB =|"|,B,=5B=" “4)
B B

12 22

G=Gs"=lr, o],c=cs.
In equation (1), we consider estimating the unknown state
variables except y, which is observable, by using

w=Ux U=[-L 1, ,]. (5)
Expressed the minimal order observer which estimates @ as

@=Aw+By+Ju , (6)
we put

AU + BC, =UA

A (7)
J=UB,.

Assuming disturbance w as step one, we can obtain

w=Ux as t—oo.

Next, we put the estimate of X as

$=Dy+Co. (8)
Then, we also obtain x =X by putting

z:)@ +CU=1, ©)

DD,, =0.

From equations (6) and (8), the minimal order observer is
expressed as
@=Aw+ By +Ju
L (10)
x=Dy+Cw,
where
A=-LA,+ A, =UAC

B=—LA, + Ay + AL=UAD
o« (1, (11)
C= ,D=
1, p L
J=UB, ,DD,, =0.
2.2 Reduced order H2 controller

When the transfer function @(s) from w(s) to z(s) is defined,



our purpose is to obtain an H, controller which satisfies the
following conditions:
1) @(s) isinternally stable, and

2) |@(s)], > min,
on the assumptions that
al) (A Bz) can be stabilized and (A1 5 Azz) is detectable,
a2) Dy, iscolumn full rank and B, is row full rank, and
a3) {A __jw[ B, :‘ V@ and {Azz —Jol 312} Yo
1 12 4 By,
are column full rank and row full rank respectively.

Here, assume the control law u = —Fx for equation (14).
Then, we obtain the following equation substituting equation
(18) for the above control law:

u=—FDC,x—FCw (- DD,, =0 ). (11)
The following equation is obtained by substituting equation
(11) into equation (3):

Mo T
z= [CF -D,F c]m

y=l6, D21]|:i:|

From the above equation, the transfer function @(s) is
expressed by
2(s) = D(s) w(s)

@(s)=G.B,~U,FCG,

where

G, = A |1 .G, = Ax | Bk
Cr |0 110
4, | B

UC:{L_z}, (13)
CF D12

Ay =A-B,F ,Cp=C,—D,F ,

Ac=A , By =—-UB,+BD,, .

When A4, ,A; are stable, the 2 norm of the transfer

(12)

function @(s) above is calculated as

|00 |2 = tracelB XB, R, racelpEYETET), (14

where
XAp + ALX +CFCr =0
DLC, +B/ X =0 (15)
DLD,=61,
and
YAL + A, Y + By BL =0. (16)

From equation (15), we obtain
XA+A TX—(DIZTa+§2TX)TRF"(D12T6'1+§2TX)
+CIC =0
-1 T~ , BT (17)
F=Ry (D12 C,+B, X)

Ry =D, D, >0.

and from equation (16), we also obtain
T T T -1 T
Y4y, +A22Y_(YA12 +B,By, )RK (A12Y+BnBlz
+B,B, =0
) o 12812 (18)
L:(YAIZ + BBy, )RK )
Ry =B, B, >0.

From equation (11), the H, controller is given by

_ |u4.C | ua.D
u(s) = {W}’(@, (19)

where
U=[-L 1,,] 4. =4-B,F

o] A [1 (20)
{2 o]

Here, feedback gain F' and observer gain L are given by
equation (17) and equation (18) respectively.

Further, equation (19) is transformed as the following
equation:

u=—F,y(s)~F,_, {(s] U4, ) U D + L} (s)

F=[F, F,_,l.

From the result above, we can see that this control law
consists of the measured outputs and the estimated outputs.

3. SIMULATION AND EXPERIMENT
3.1 Controlled object

We confirm the effectiveness of a reduced order H2
controller using a traveling crane in this chapter. Figure 1
shows a model of the controlled object, where x is the position
of the trolley, / the lope length, m the mass of a load, M the
mass of the trolley, 8 the sway angle of a load and u the
external force. For fig. 1, the motion of a traveling crane is
expressed by

e
{(M+m)x—mll9 sin —miGcosd +u_ 1)

Upon approximating these equations around €=0 and
assuming u = K, (v—X) , equation (21) is transformed into the

lé=—)'écost9—gsin¢9

following equation:

{Mic“:—KVJ.c+mg0+va 22)
M@ =K x—(M+m)gb—-K,v
l—» X
u—->* M
L
O
I
i
!
! Fy
|
| b

Fig. 1 Crane model



Considering controlled outputs and disturbances for above
equations, the state equation is expressed as

x=Apx+ B,d + Bpv

y.=Cx (23)
y=Cpx+D,r
where,

X =x,%=x,6=0,0,=60,

0

drp 1

Cp:
P 0

0 0},@ =l44,D,, :={

m=0415[kg], M =18[kg],1=1[m], g =9.8[m/s*].

d

p2

0

From equation (23), a transfer function from input w(s) to
output z(s) is expressed by

sy [AO [P
z,(5) W, (s)u(s)
; (24)
_[H©P.s) WiR6]ws)
B (s) P(s) L u(s)
where
_[dcs) 4, | By 4] B,
el
A 0 A, | B, O
Pw(s>:=[cL "D },sz(s):{c” 5 0},
P w z
A4, | B. A4, | B.
VV](S):|:CVL1 le j|, W2 (S):|:Cw2 DM2:|
wl wl w2 w2

Here, we apply a transfer matrix based on the design method
of Gopinath for the equation (24), and we can obtain the
following equation.

)?:Z)_C+§1W+§2u

z= ax + Dy,u (25)
y= 52)_6 + D, w
where,
B 4, 0 0 3 [B, 0] B B,
A=B,C, A4, 0 |\B = 0 ,B,=| 0
0 0 sz 0 BwZ
~ lecz Cwl 0 ~
C = .G =lc, 0 o]
0 0 C,,

0
Dy, :=|:D z} Dy, =[0 Drp]'
»

The block diagram in Fig.2 is H, control system.
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P :Plant for Control,:Plant for Output-evaluation
P,:Plant for Disturbance,
P,.:Plant for Disturbance-evaluation,
K:Controller,u:Control Input, w:Disturbance,
¥p: Measured Output, z:Controlled Outputs,
W, W,:Weighting Functions

Fig.2 H, control system

3.2 Selection of weights

For the weighting function, we chose the following weights
accordingly:

e Seclection of weight 7}

Wi, Wy, Wis and Wy, are respectively weights for the
position of a trolley, the angle of a load, the velocity of a
trolley and the angular velocity of a load. Particularly for W,
pseudo integrations are used so that the trolley position x can
follow the reference value. And the gain of W, has a large
value so that it can reduce the quickly motion and sway of a

load.

W, = diag ( ]
e Selection of weight 7,

For W, , k,, is determined so as to restrict the control input,
and /rand &, are determined so as not to be affected by noise.

s+,
W, = — 27)

20 50 30 100
$4+09 5417 s+1" s+1

(26)

k, 1, =50,h,=100,k, =30
s+h,
o Selection of weights B, and D,,

Bai1, Bi, Bapz and By, are respectively weights for a
trolley velocity, torque disturbances and a load velocity and
torque ones. And we chose D,, so as to become zero, because
D,, corresponding D,; in the conventional H2 control is not
necessary to satisfy row full rank.

B, =diag(-1,~1,-30,-30) ,D,, =0 (28)

3.3 Experimental & simulation results

Figure 3 and Fig. 4 show the simulation and experimental
results by the reduced order H, control system based on the
minimal order observer that we propose. In these results, the
desired position of 0.5 [m] was given first, and after about 25
seconds an impulse disturbance 4 ~ 5 [deg] was given. As a
result, we can obtain similar results for simulations and
experiments. And, you can see the position quickly followed
the reference value, and even if a disturbance was added to the
system, the error from the reference value was small, and the
sway of the load was quickly reduced.

Next, fig. 5 shows experimental results by the H, control



system with the full order observer (conventional system).
From the comparison Fig.3 and Fig. 5, you can see that both
positioning controls are almost same performances, but the
anti-sway for disturbance is better performance in the reduced

order H2 control system rather than in the conventional system.

Finally, fig. 6 shows that the crane is in control after 15 [sec].
You can see that the sway of a load is not quickly reduced in
the non-control case, however done in the control case.
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Fig. 3 Simulation results of minimal order observer
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Fig. 4 Experimental results for full-order observer
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Fig. 5 Experimental results for minimal-order observer
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Fig. 6 The responses of non-control and control cases

4. CONCLUSIONS

We proposed a reduced order H, controller by using the
minimal order observer for a system with disturbances. We
confirmed that the responses by the H, controller based on the
minimal order observer are the same as those by the
conventional H, controller in the experiments. Future tasks are
to apply other systems and design H infinity control system
using the minimal order observer.
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