• 제목/요약/키워드: Cracking load

검색결과 615건 처리시간 0.037초

최적이론에 의하여 설계된 최소 깊이 더블티 댑단부 전단거동 평가 (Evaluation on Shear Behavior of Double-tee Dap-ends with the Least Depth from Optimization Proces)

  • 유승룡;김대훈
    • 콘크리트학회논문집
    • /
    • 제11권4호
    • /
    • pp.43-54
    • /
    • 1999
  • Shear tests are performed on four full-scale 12.5 m proto-type models, "least depth double tee," which are resulted from the optimization process. Domestic superimposed live load regulation, domestic material properties which is available to product. Korean building code requirements, construction environments and economy are considered as the main factors to establish the process. All of the specimens tested fully comply with the shear strength requirements as specified by ACI 318-95. The research has shown following results. 1) The development length requirement of ACI 318-95 does not seem a good predictor for the estimation of bond failure in a beam with the strands below the supports. 2) The load required for the first initial coner cracking in the dap end and first web shear cracking does not seem to have any relation with the dimension and shear strength of the section in the test beams. 3) The strand slip has a direct relationship with the web shear cracking. However, the coner cracking in the dap end does not give any help for the slip in anchorage. 4) Use of whole area for bearing steel at the bottom of dap end is desired for safe bearing pressure design in the precast prestressed double tee beams. 5) The deflection of beam influences directly on the amount of strand slip at the anchorage after initiation of it, and relationship between them are very linear.

Test Results and Nonlinear Analysis of RC T-beams Strengthened by Bonded Steel Plates

  • Ren, Wei;Sneed, Lesley H.;Gai, Yiting;Kang, Xin
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권2호
    • /
    • pp.133-143
    • /
    • 2015
  • This paper describes the test results and nonlinear analysis of reinforced concrete T-beams strengthened by bonded steel plates under increasing static loading conditions. The first part of this paper discusses the flexural tests on five T-beams, including the test model design (based on similarity principles), test programs, and test procedure. The second part discusses the nonlinear numerical analysis of the strengthened beams, in which a concrete damage plasticity model and a cohesive behavior were adopted. The numerical analysis results are compared with experimental data and show good agreement. The area of bonded steel plate and the anchor bolt spacing were found to have an impact on the cracking load, yield load, and ultimate load. An increase in the area of steel plate and a reduction of the anchor spacing could significantly improve the cracking and ultimate loads and decrease the damage of the beam.

진동 및 전압 철근 콘크리트관의 종.횡단배수관 적용성 검토에 관한 연구 (Study on the possible application of Vibrated and Rolled reinforced concrete pipe to vertical.crossing water distribution system)

  • 박도경;이명규;양극영
    • 한국건축시공학회지
    • /
    • 제6권2호
    • /
    • pp.111-117
    • /
    • 2006
  • In case of carrying out vortical crossing water distribution system in expressways or general roads construction, VR(Vibrated and Rolled reinforced concrete) pipes are restricted because of their specification of reinforced spun concrete pipe or on-site made pipe. Therefore, in order to apply VR pipes to those constructions, through the structural behavior experiments of the pipes, VR pipes are compared and verified with reinforced spun concrete pipe and the results are obtained as the following. From the experiments and analyses of Pipe Stiffness(PS) of the pipes, cracking loading is approved to satisfy the KS regulations. Through a direct load test, the cracking loading strength and the maximum load test of VR pipe is larger compared with reinforced spun concrete pipe. Particularly, even if side weld is thin, there is no little change in the cracking strength of VR pipe. The results of the direct load test analysis show that the structural behavior of VR pipe is equivalent or higher compared with reinforced spun concrete pipe in performance and VR pipe could be used as the water distribution pipe for roads. In this study, through pipe stiffness, direct load test and load teat on earth, reinforced spun concrete pipe and VR pipe are compared. And as a result, the structural behavior of VR pipe is comprehensively excellent. From the structural behavior tests, VR pipe's section shows more thickness and has uniform characteristics so that VR pipe is considered more favorable than reinforced spun concrete pipe.

Flexural performance of composite sandwich wall panels with foamed concrete

  • Lei Li;Wei Huang;Zhengyi Kong;Li Zhang;Youde Wang;Quang-Viet Vu
    • Steel and Composite Structures
    • /
    • 제52권4호
    • /
    • pp.391-403
    • /
    • 2024
  • The flexural behavior of composite sandwich wall panels with different thicknesses, numbers of holes, and hole forms, and arrangement form of longitudinal steel bar (uniform type and concealed-beam type) are investigated. A total of twelve composite sandwich wall panels are prepared, utilizing modified polystyrene particles mixed with foam concrete for the flexural performance test. The failure pattern of the composite sandwich wall panels is influenced by the extruded polystyrene panel (XPS) panel thickness and the reinforcement ratio in combination, resulting in both flexural and shear failure modes. Increasing the XPS panel thickness causes the specimens to transition from flexural failure to shear failure. An increase in the reinforcement ratio leads to the transition from flexural failure to shear failure. The hole form on the XPS panel and the steel bar arrangement form affect the loading behavior of the specimens. Plum-arrangement hole form specimens exhibit lower steel bar strain and deflection compared to linear-arrangement hole form specimens. Additionally, specimens with concealed beam-type steel bar display lower steel bar strain and deflection than uniform-type steel bar specimens. However, the hole form and steel bar arrangement form have a limited impact on the ultimate load. Theoretical formulas for cracking load are provided for both fully composite and non-composite states. When compared to the experimental values, it is observed that the cracking load of the specimens with XPS panels closely matches the calculations for the non-composite state. An accurate prediction model for the ultimate load of fully composite wall panels is developed. These findings offer valuable insights into the behavior of composite sandwich wall panels and provide a basis for predicting their performance under various design factors and conditions.

계측 및 수치해석을 통한 터널 라이닝의 균열 원인 연구 (A study on the cracking of tunnel lining by measurement and numerical analysis)

  • 황학;정헌철;김유석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.33-40
    • /
    • 2001
  • In this research, the cracking of tunnel concrete lining was investigated and analyzed through long-term measurement and nonlinear numerical analysis. For one year after the casting of lining, the stresses and strains were measured by the sensors installed in hard rock tunnel lining. The measurements showed that only small stresses which were less than cracking stress occurred in every survey sections regardless of sensor directions. It could be induced that the external load applied to the lining was small or ignorable. Also, it was carried out short-term numerical analysis based on such site condition as ambient temperature, the- degree of overbreak and mold staying period. Long-term numerical analysis based on creep & shrinkage and nonlinear cracking was carried out. The output showed that construction condition and ambient environments could make the lining concrete crack without external loads. The cracks formed in this process does not indicate the structural instability of the tunnel.

  • PDF

고강도 콘크리트를 사용한 철근콘크리트 보의 전단피로거동에 관한 연구 (A Study on Shear-Fatigue Behavior of Reinforced Concrete Beams using High Strength Concrete)

  • 곽계환;박종건
    • 콘크리트학회논문집
    • /
    • 제11권5호
    • /
    • pp.119-130
    • /
    • 1999
  • Recently, as the building structure has been larger, higher, longer and more specialized, the demand of material with high-strength concrete for building has been increasing. In this research, silica-fume was used as an admixture in order to get a high-strength concrete. From the test result, High-strength concrete with cylinder strength of 1,200kgf/$\textrm{cm}^2$ in 28-days was produced and tested. The static test was carried out to measure the ultimate load, the initial load of flexural and diagonal cracking, crack patterns and fracture modes. The load versus strain and load versus deflection relations were obtained from the static test. The relation of cycle loading to deflections on the mid-span, the crack propagation and the modes of failure according to cycle number, fatigue life and S-N curve were observed through the fatigue test. Based on the fatigue test results, high-strength reinforced concrete beams failed to 57~66 percent of the static ultimate strength. Fatigue strength about two million cycles from S-N curves was certified by 60 percent of static ultimate strength.

Behaviour of steel-fibre-reinforced concrete beams under high-rate loading

  • Behinaein, Pegah;Cotsovos, Demetrios M.;Abbas, Ali A.
    • Computers and Concrete
    • /
    • 제22권3호
    • /
    • pp.337-353
    • /
    • 2018
  • The present study focuses on examining the structural behaviour of steel-fibre-reinforced concrete (SFRC) beams under high rates of loading largely associated with impact problems. Fibres are added to the concrete mix to enhance ductility and energy absorption, which is important for impact-resistant design. A simple, yet practical non-linear finite-element analysis (NLFEA) model was used in the present study. Experimental static and impact tests were also carried out on beams spanning 1.3 meter with weights dropped from heights of 1.5 m and 2.5 m, respectively. The numerical model realistically describes the fully-brittle tensile behaviour of plain concrete as well as the contribution of steel fibres to the post-cracking response (the latter was allowed for by conveniently adjusting the constitutive relations for plain concrete, mainly in uniaxial tension). Suitable material relations (describing compression, tension and shear) were selected for SFRC and incorporated into ABAQUS software Brittle Cracking concrete model. A more complex model (i.e., the Damaged Plasticity concrete model in ABAQUS) was also considered and it was found that the seemingly simple (but fundamental) Brittle Cracking model yielded reliable results. Published data obtained from drop-weight experimental tests on RC and SFRC beams indicates that there is an increase in the maximum load recorded (compared to the corresponding static one) and a reduction in the portion of the beam span reacting to the impact load. However, there is considerable scatter and the specimens were often tested to complete destruction and thus yielding post-failure characteristics of little design value and making it difficult to pinpoint the actual load-carrying capacity and identify the associated true ultimate limit state (ULS). To address this, dynamic NLFEA was employed and the impact load applied was reduced gradually and applied in pulses to pinpoint the actual failure point. Different case studies were considered covering impact loading responses at both the material and structural levels as well as comparisons between RC and SFRC specimens. Steel fibres were found to increase the load-carrying capacity and deformability by offering better control over the cracking process concrete undergoes and allowing the impact energy to be absorbed more effectively compared to conventional RC members. This is useful for impact-resistant design of SFRC beams.

철근콘크리트 인장부재의 인장강성 및 파괴거동에 관한 연구 (Failure Behavior and Tension Stiffening of RC Tension Members)

  • 박제선;이봉학;윤경구;홍창우;이주형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.737-742
    • /
    • 1998
  • The tension stiffening effect is defined as the increase in stiffness in reinforced concrete member due to the stiffness provided by concrete between cracks. If this is disregarded in analysis of reinforced concrete members, especially at the level of service loads, member stiffnesses may be underestimated considerably. This paper presents on the failure behavior and tension stiffening of RC tension test with main variables such as concrete strength, rebar diameter and strength. The tension stiffening was analyzed from the load-displacement relationship by ACI code and the proposed by Collins & Mitchell. In summary, the effect of tension stiffening decrease rapidly as the rebar diameter increase, rebar strength increase, and concrete strength increase. The effect of tension stiffening on RC member is the biggest near the behavior of concrete cracking and decrease as the load close to the breaking point. Thus, the tension stiffening should be considered for the precise analysis near the load of concrete cracking.

  • PDF

마이크로 및 매크로 섬유를 사용한 하이브리드 HPFRCC의 역학적 특성에 관한 연구 (A Study on the Mechanical Properties of Hybrid HPFRCs Using Micro and Macro Fibers)

  • 김재환;이의배;김영선;김영덕;주지현;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.276-279
    • /
    • 2004
  • Concrete is one of the principal materials for the structure and it is widely used all over the world. but it shows extremely brittle failure under bending and tensile load. Recently to improve such a poor property. High Performance Fiber Reinforced Cementitious Composites (HPFRCC) have been developed. and it are defined by an ultimate strength higher than their first cracking strength and the formation of multiple cracking during the inelastic deformation process. This study is to develop the hybrid HPFRCC with high ductility and strain capacity in bending and tensile load. and the three-point bending test on hybrid HPRFCC reinforced with micro and macro fibers is carried out in this paper. As the results of the bending tests. hybrid HPFRCCs reinforced with PVA40+SF and PVA100+PVA660 showed the high ultimate bending stress, multiple cracks and displacement hardening under bending load.

  • PDF

Numerical crack modelling of tied concrete columns under compression

  • Bosco, C.;Invernizzi, S.
    • Computers and Concrete
    • /
    • 제10권6호
    • /
    • pp.575-586
    • /
    • 2012
  • In the present paper the problem of monotonically compressed concrete columns is studied numerically, accounting for transverse steel reinforcement and concrete cracking. The positive confinement effect of the ties on the core concrete is modeled explicitly and studied in the case of distributed or concentrated vertical load. The main aim is to investigate the influence of transverse reinforcement steel characteristics on the column load carrying capacity and ductility, in order to provide an evaluation about some standards requirements about the class and ductility of steel to be used for ties. The obtained results show that the influence of transverse reinforcement steel class of ductility is negligible both on the column load carrying capacity and on its ductility. Also the dissipated energy is basically unchanged. In view of these evidences, some standards requirements about the steel class of ductility to be used for ties appear to be rather questionable.