• Title/Summary/Keyword: Cracked Beam

Search Result 195, Processing Time 0.028 seconds

A Study Vibration Characteristic of Railway Freight Car's End Beam for Taebaek Line (태백선을 주행하는 화차 엔드빔의 진동특성에 관한 연구)

  • 함영삼;문경호;홍재성;이동형;서정원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.378-383
    • /
    • 2004
  • Bogie is the connection device between carbody and wheel. It is the core part that exert a important effect on the passenger safety and running safety. Bogie largely consist of bogie frame, suspension, brake, wheel set. Static and Dynamic load have acted on it complexly. So when the bogie is designed, finite element method, static load test, fatigue test running test should be considered. Some bogie frame of high speed railway freight car have the problem. It's end beam was cracked. The crack of the end beam have a bad effect on brake system. ROTEM co. made an improved end beam and applied one set to freight car. this report showed the vibration characteristic which was compared conventional bogie to improved bogie for running safety.

  • PDF

Effects of Slenderness Ratio on Stability of Cracked Beams Subjected to Sub-tangential Follower Force (경사종동력을 받는 크랙 외팔보의 안정성에 미치는 세장비의 영향)

  • Gal, Young-Min;Ahn, Sung-Jin;Yoon, Han-Ik;Son, In-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.961-966
    • /
    • 2008
  • In this paper, the purpose is to investigate the stability and variation of natural frequency of a Timoshenko cantilever beam subjected to Subtangential follower force and tip mass. In addition, an analysis of the flutter instability(flutter critical follower force) of a cantilever beam as slenderness ratio is investigated. The governing differential equations of a Timoshenko beam subjected to an end tangential follower force is derived via Hamilton;s principle. The two coupled governing differential equations are reduced to one fourth order ordinary differential equation in terms of the flexural displacement. Finally, the influence of the slenderness ratio and tip mass on the critical follower force and the natural frequency of a Timoshenko beam are investigated.

  • PDF

In-plane vibrations of cracked slightly curved beams

  • Oz, H. Ridvan
    • Structural Engineering and Mechanics
    • /
    • v.36 no.6
    • /
    • pp.679-695
    • /
    • 2010
  • In-plane vibrations of slightly curved beams having cracks are investigated numerically and experimentally. The curvature of the beam is circular and stays in the plane of vibration. Specimens made of steel with different lengths but with the same radius of curvature are used in the experiments. Cracks are opened using a hand saw having 0.4 mm thickness. Natural frequencies depending on location and depth of the cracks are determined using a Bruel & Kjaer 4366 type accelerometer. Then the beam is assumed as a Rayleigh type slightly curved beam in finite element method (FEM) including bending, extension and rotary inertia. A flexural rigidity equation given in literature for straight beams having a crack is used in the analysis. Frequencies are obtained numerically for different crack locations and depths. Experimental results are presented and compared with the numerical solutions. The natural frequencies are affected too much due to larger moments when the crack is around nodes. The effect can be neglected when it is at the location of maximum displacements. When the crack is close to the clamped end, the decrease in the frequencies in all modes is very high. The consistency of the results and validity of the equations are discussed.

Theory and Experiments of Free Vibration Characteristics for the Composite Beam with Transverse Open Cracks (크랙이 있는 복합재료 보 자유진동특성의 이론과 실험적 입증)

  • 하태완
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.217-227
    • /
    • 2002
  • Theoretical and experimental free vibration characteristics of cantilevered laminated composite beams with single or multiple transverse non-propagating open cracks are investigated. The presence of intrinsic cracks in beams modifies the flexibility and in turn free vibration characteristics of the structures, and the existence of the multiple cracks in an anisotropic composite beam affects the free vibration characteristics in a more complex fashion compared with the beam with a single crack. Also the experimental results are well coincide with the numerical results in the decrease of natural frequencies and the transformation of mode shapes because of intrinsic cracks in the composite or aluminum beams. It is revealed that non-destructive crack detection(NDT) or vibration based inspection(VBI) is possible by analyzing the free vibration responses of cracked composite beams.

Damage detection in structural beam elements using hybrid neuro fuzzy systems

  • Aydin, Kamil;Kisi, Ozgur
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.1107-1132
    • /
    • 2015
  • A damage detection algorithm based on neuro fuzzy hybrid system is presented in this study for location and severity predictions of cracks in beam-like structures. A combination of eigenfrequencies and rotation deviation curves are utilized as input to the soft computing technique. Both single and multiple damage cases are considered. Theoretical expressions leading to modal properties of damaged beam elements are provided. The beam formulation is based on Euler-Bernoulli theory. The cracked section of beam is simulated employing discrete spring model whose compliance is computed from stress intensity factors of fracture mechanics. A hybrid neuro fuzzy technique is utilized to solve the inverse problem of crack identification. Two different neuro fuzzy systems including grid partitioning (GP) and subtractive clustering (SC) are investigated for the highlighted problem. Several error metrics are utilized for evaluating the accuracy of the hybrid algorithms. The study is the first in terms of 1) using the two models of neuro fuzzy systems in crack detection and 2) considering multiple damages in beam elements employing the fused neuro fuzzy procedures. At the end of the study, the developed hybrid models are tested by utilizing the noise-contaminated data. Considering the robustness of the models, they can be employed as damage identification algorithms in health monitoring of beam-like structures.

A Study on the Dynamic Characteristics of a Composite Beam with a Transverse Open Crack (크랙이 존재하는 복합재료 보의 동적 특성 연구)

  • 하태완;송오섭
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.1019-1028
    • /
    • 1999
  • Free vibration characteristics of cantilevered laminated composite beams with a transverse non0propagating open carck are investigated. In the present analysis a special ply-angle distribution referred to as asymmetric stiffness configuration inducing the elastic coupling between chord-wise bending and extension is considered. The open crack is modelled as an equivalent rotational spring whose spring constant is calculated on the basis of fracture mechanics of composite material structures. Governing equations of a composite beam with a open crack are derived via Hamilton's Principle and Timoshenko beam theory encompassing transverse shear and rotary inertia effect. the effects of various parameters such as the ply angle, fiber volume fraction, crack depth, crack position and transverse shear on the free vibration characteristics of the beam with a crack is highlighted. The numerical results show that the natural frequencies obtained from Timoshenko beam theory are always lower than those from Euler beam theory. The presence of intrinsic cracks in anisotropic composite beams modifies the flexibility and in turn free vibration characteristics of the structures. It is revealed that non-destructive crack detection is possible by analyzing the free vibration responses of a cracked beam.

  • PDF

Effect of fatigue crack propagation on natural frequencies of system in AISI 4140 Steel

  • Bilge, Habibullah;Doruk, Emre;Findik, Fehim;Pakdil, Murat
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.305-312
    • /
    • 2019
  • In this study, we investigated the effect of fatigue crack propagation of the beams which have a vital importance in engineering applications, on the natural frequency of the system. Beams which have a wide range of applications, are used as fundamental structural elements in engineering structures. Therefore, early detection of any damages in these structures is of vital importance for the prevention of possible destructive damages. One of the widely used methods of early detection of damages is the vibration analysis of the structure. Hence, it is of vital importance to detect and monitor any changes in the natural frequencies of the structure. From this standpoint, in this study we experimentally investigated the effect of fatigue crack propagation on beams produced from 4140 steel, of the natural frequency of the beam. A crack was opened on the $8{\times}16{\times}500mm$ beam using a 3 mm long and 0.25 mm wide wire erosion. The beam, then, underwent 3 point bending tests at 10 Hz with a dynamic fatigue device and its natural frequencies were measured in scheduled intervals and any changes taking place on the natural frequencies of the beam were measured. This data allowed us to identify and measure the crack occurring on the beam subjected to dynamic loading, during the propagation phase. This method produced experimental data. The experimental data showed that the natural frequency of the beam decreased with the propagation of the fatigue crack on the beam.

Stress path adapting Strut-and-Tie models in cracked and uncracked R.C. elements

  • Biondini, Fabio;Bontempi, Franco;Malerba, Pier Giorgio
    • Structural Engineering and Mechanics
    • /
    • v.12 no.6
    • /
    • pp.685-698
    • /
    • 2001
  • In this paper, a general method for the automatic search for Strut-and-Tie (S&T) models representative of possible resistant mechanisms in reinforced concrete elements is proposed. The representativeness criterion here adopted is inspired to the principle of minimum strain energy and requires the consistency of the model with a reference stress field. In particular, a highly indeterminate pin-jointed framework of a given layout is generated within the assigned geometry of the concrete element and an optimum truss is found by the minimisation of a suitable objective function. Such a function allows us to search the optimum truss according to a reference stress field deduced through a F.E.A. and assumed as representative of the given continuum. The theoretical principles and the mathematical formulation of the method are firstly explained; the search for a S&T model suitable for the design of a deep beam shows the method capability in handling the reference stress path. Finally, since the analysis may consider the structure as linear-elastic or cracked and non-linear in both the component materials, it is shown how the proposed procedure allows us to verify the possibilities of activation of the design model, oriented to the serviceability condition and deduced in the linear elastic field, by following the evolution of the resistant mechanisms in the cracked non-linear field up to the structural failure.

Integrity evaluation of the welded structure bogie for the railway freight car (철도화차용 용접구조대차의 건전성평가에 관한 연구)

  • Hong J.S.;Ham Y.S.;Chung H.C.;Paik Y.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.361-364
    • /
    • 2005
  • Some bogie frames manufactured in 1999, 2000 year have the fatal problem. Three or four years later, the cracked end beam among them have discovered in 2002, 2003 year. The crack situation of the end beam have a bad effect on brake system. In that case, the cars would be in danger of derailment. To improve the end beam, a research of covering the whole field of welded type bogie frame was started. Main line real tests were performed at Young-Dong line. The stress of main positions for bogie frame was measured. Also up-down direction and left-right direction vibration acceleration of the bogie frame were measured. At this time the tests were performed for the three types bogie. The test result concludes that the crack cause of the end beam is not brake load but vibration at running mainly. It is estimated that the life of the improved car which end beam reinforced is safe within the car permitted life(25 years). The improvement methods of the end beam are presented by construction modification, parts modification. The integrity evaluation is inspected by analysis the real line test results, the improvement methods of the end beam.

  • PDF

Crack identification in beam-like structures using multi-mass system and wavelet transform

  • Siamak Ghadimi;Seyed Sina Kourehli;Gholamreza Zamani-Ahari
    • Earthquakes and Structures
    • /
    • v.27 no.4
    • /
    • pp.263-283
    • /
    • 2024
  • This research introduces a new composite system that utilizes multiple moving masses to identify cracks in structures resembling beams. The process starts by recording displacement time data from a set of these moving masses and converting this information into a relative time history through weighted aggregation. This relative time history then undergoes wavelet transform analysis to precisely locate cracks. Following wavelet examinations, specific points along the beam are determined as potential crack sites. These points, along with locations on the beam susceptible to cracked point due to support conditions, are marked as crack locations within the optimization algorithm's search domain. The model uses equations of motion based on the finite element method for the moving masses on the beam and employs the Runge-Kutta numerical solution within the state space. The proposed system consists of three successive moving masses positioned at even intervals along the beam. To assess its effectiveness, the method is tested on two examples: a simply supported beam and a continuous beam, each having three scenarios to simulate the presence of one or multiple cracks. Additionally, another example investigates the influence of mass speed, spacing between masses, and noise effect. The outcomes showcase the method's effectiveness and efficiency in localizing crack, even in the presence of noise effect in 1%, 5% and 20%.