• Title/Summary/Keyword: Crack-tip field

Search Result 138, Processing Time 0.029 seconds

A Study on the Fatigue Crack Growth Behavior in Welding Residual Stress Field(I) (용접잔류응력장에서의 피로균열 성장거동에 관한 연구(I))

  • 최용식;김영진;우흥식
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.1
    • /
    • pp.19-29
    • /
    • 1990
  • The objective of this paper is to investigate the effect of residual stresses on the $\Delta$K$\sub$th/ and fatigue crack growth behavior of butt weldments. For this purpose, transverse butt sutmerged arc welding was performed on SM50A steel plate and CT(compact tension) specimens which loading direction is perpendicular to weld bead were selected. Welding residual stresses distribution on the specimen was determined by hole drilling method. The case of crack located parallel to weld bead, the states of as weld and PWHT, $\Delta$K$\sub$th/ of specimens(HAZ, weld zone) was higher than that of the base metal probably because of the compressive residual stresses of crack tip. In low $\Delta$K region, it is estimated that the effects of residual stresses for da/dN are great. In region II, the da/dN of weldments in as weld state was lower than that of the base metal. Though da/dN of Weldments in PWHT state was similar to that of the base metal. The constant of power law, m in two states consisted with the base metal. Therefore , it is estimated that the value of m is not affected by residual stresses. Fatigue crack growth behavior of weldments consisted with the base metal considering the effective stress intensity factor range($\Delta$K$\sub$eff/) included the effect of initial residual stress(Kres). Thus, we can predict the fatigue crack growth behavior of weldment by knowing the distribution of initial residual stress at the crack tip.

  • PDF

Interfacial Crack Propagation Under Various Mode-Mixes

  • Park, Byung-Sun;Chai, Young-Suck
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.39-45
    • /
    • 2002
  • Initiation and propagation of interfacial crack along bimaterial interface are considered in this study. A biaxial loading device for a single specimen is used for obtaining a wide range of mode-mixities. The specimen is an edge-cracked bimaterial strip of glass and epoxy; the biaxial loading device, being capable of controlling displacements in two perpendicular directions, is developed. A series of interfacial crack initiation and Propagation experiments are conducted using the biaxial loading device for various mixed modes. Normal crack opening displacement (NCOD) is measured near crack front by a crack opening interferometry and used for extracting fracture parameters. From mixed mode interfacial crack initiation experiments, large increase in toughness with shear components is observed. The behavior of interfacial crack propagation analyzed as a function of mode-mix shows that initial crack propagation is delayed with increase of mode-mixity, and its velocity is increased with positive mode-mixity but decreased with negative case. However, it is found that crack propagation is less accelerated with positive mode-mixity than the negative mode-mixity, which may be caused by contact and/or effects of friction between far field and near-tip Held along the interfacial crack.

Combined Extended and Superimposed Finite Element Method for Crack Analysis (균열해석을 위한 겹침확장 유한요소법)

  • 이상호;송정훈;허문석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.341-348
    • /
    • 2004
  • This paper presents a modeling technique of cracks by combined extended and superposed finite element method (XSFEM) which is a combination of the extended finite element method (XFEM) and the mesh superposition method (sversion FEM). In the proposed method, the near-tip field is modeled by a superimposed patch consisting of quarter point elements and the rest of the discontinuity is treated by the XFEM. The actual crack opening in this method is measured by the sum of the crack openings of XFEM and SFEM in transition region. This method retains the strong point of the XFEM so it can avoid remeshing in crack evolution and trace the crack growth by translation or rotation of the overlaid mesh and the update of the nodes to be enriched by step functions. Moreover, the quadrature of the Galerkin weak form becomes simpler. Numerical experiments are provided to demonstrate the effectiveness and robustness of the proposed method.

  • PDF

Analyses of the Decrease Phenomenon of Fracture Resistance Curve Under Tension-Compression Loading (인장-압축하중 하의 파괴저항곡선의 감소현상 해석)

  • Yun, Byeong-Gon;Seok, Chang-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.378-385
    • /
    • 2000
  • Fracture resistance (J-R) curves, which are used for elastic-plastic fracture mechanics analyses, decreased under tension-compression loading condition. This phenomenon was proved by several former researches, but the causes have not been clear yet. The objective of this paper is to investigate the cause of this phenomenon. On the basis of fracture resistance curve test results, strain hardening hypothesis, stress redistribution hypothesis and crack opening hypothesis were built. In this study, hardness tests, Automated Ball Indentation(ABI) tests, theoretical stress field analyses, and crack opening analyses were performed to prove the hypotheses. From this study, strain-hardening of material, generation of tensile residual stress at crack tip, and crack opening effects are proved as the causes of the decrease hypothesis.

ANALYSIS FOR 3-POINT LOADED DISC BY PHOTOELASTICITY (3점 압축하중을 받는 원판의 광탄성 해석)

  • 함경춘;이하성
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.1
    • /
    • pp.5-12
    • /
    • 1992
  • Disc specimen with the center crack and edge crack simulated by two-dimensional static method is used to analyze the stress field around the crack tip in terms of the stress intensity factor, K. A simple and convenient method of testing to realize the mifed mode stress intensity factor of the cracked body is used, The conclusions obtatined in this photoelastlc analysis are as follows ; 1. According to this experiment, cracked disc specimen can be used to demonstrate the mixed mode stress intensity factor analysis by simply changing the crack angle from the loading line. 2. Despite the simplicity and continuous data reading, the photoelastic method shows the slightly lower strain reading comparing to the FEM analysis method. 3. In this photoelastic analysis, $K_{I}$ of center cracked disc specimen under a pair of compressive load shows negative value as the crack angle increases over 30$^{\circ}$.

  • PDF

Numerical Analysis of J-integral Value in the Rectangular Plate with a Crack (균열(龜裂)을 가진 사각평판(四角平板)의 수치해법(數値解法)에 의(依)한 J-적분치(積分値))

  • D.S.,Kim;J.E.,Park
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.2
    • /
    • pp.35-42
    • /
    • 1984
  • A line integral is exhibited which has the same value for all paths surrounding the tip of crack in a two dimensional strain field of elastic-plasticc material. Finite element method was used to determine Rice's J-integral value in centrally cracked plate. These numerical J-integral values were compared with corresponding values of reference with low hardening and high yield strength. The J-integral value was also computed for a crack extension and different load condition. For increasing crack length the value of J-integral also increases, this means that the crack is unstable. To prove path independent, three paths were used in the analysis and proved.

  • PDF

A Study on the Fatigue Growth Behavior of Surface Cracks -Prediction of Crack Aspect Ratio under the Constant Amplitude Tension Fatigue Loads- (표면균열의 피로성장거동연구 -인장 반복 하중하에서의 균열형상비 예측-)

  • 최용식;양원호;김재원
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.43-50
    • /
    • 1990
  • The fatigue growth behavior of surface cracks cannot be adequately predicted solely by stress intensity factor analysis. This is caused by different plastic deformation due to variations in the stress field triaxiality along the crack tip. Therefore, a new model which accounts for the crack closure phenomenon is proposed in this paper to predict the fatigue crack growth patterns for surface cracks. Fatigue tests were performed to develop the new model for the prediction and to assess the accuracy of the analysis. The predicted crack growth behavior for PMMA and Aluminum alloy 7075-T6 materials agreed well with the experimental data.

  • PDF

A Study on the Determination of Stress Intensity Factors in Orthotropic Plane Elastic Bodies (직교이방성 평면탄성체의 응력확대계수 결정에 관한 연구)

  • Jin, Chi Sub;Lee, Hong Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.19-27
    • /
    • 1993
  • Recent work in the mechanics of fracture points out the desirability of a knowledge of the elastic energy release rate, the crack extension force, and the character of the stress field surrounding a crack tip in analyzing the strength of cracked bodies. The objective of this work is to provide a discussion of the energy rates, stress fields and the like of various cases for anisotropic elastic bodies which might be of interest. Reinforced concrete, wood, laminates, and some special types of elastic bodies with controlled grain orientation are often orthotropic. In this paper, determination of the stress intensity factors(SIFs) of orthotropic plane elastic body using crack tip singular element and fine mesh in near the crack tip is performed. A numerical method in this paper was used by displacement correlation method. A numerical example problem of an orthotropic cantilevered single edge cracked elastic body subjected to shear loading was analyzed, and the results of this paper are in good agreement with those of the others.

  • PDF

J-integral and fatigue life computations in the incremental plasticity analysis of large scale yielding by p-version of F.E.M.

  • Woo, Kwang S.;Hong, Chong H.;Basu, Prodyot K.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.1
    • /
    • pp.51-68
    • /
    • 2004
  • Since the linear elastic fracture analysis has been proved to be insufficient in predicting the failure of strain hardening materials, a number of fracture concepts have been studied which remain applicable in the presence of plasticity near a crack tip. This work thereby presents a new finite element model to predict the elastic-plastic crack-tip field and fatigue life of center-cracked panels(CCP) with ductile fracture under large-scale yielding conditions. Also, this study has been carried out to investigate the path-dependence of J-integral within the plastic zone for elastic-perfectly plastic, bilinear elastic-plastic, and nonlinear elastic-plastic materials. Based on the incremental theory of plasticity, the p-version finite element is employed to account for the accurate values of J-integral, the most dominant fracture parameter, and the shape of plastic zone near a crack tip by using the J-integral method. To predict the fatigue life, the conventional Paris law has been modified by substituting the range of J-value denoted by ${\Delta}J$ for ${\Delta}K$. The experimental fatigue test is conducted with five CCP specimens to validate the accuracy of the proposed model. It is noted that the relationship between the crack length a and ${\Delta}K$ in LEFM analysis shows a strong linearity, on the other hand, the nonlinear relationship between a and ${\Delta}J$ is detected in EPFM analysis. Therefore, this trend will be depended especially in the case of large scale yielding. The numerical results by the proposed model are compared with the theoretical solutions in literatures, experimental results, and the numerical solutions by the conventional h-version of the finite element method.

A Study on the Fracture Behavior of a Two Dimensional Crack in Gas Pipelines Considering Constraint Effects (구속효과를 구려한 가스배관 결함의 2차원적 파괴거동 해석에 관한 연구)

  • Sim, Do-Jun;Jang, Yeong-Gyun;Choe, Jae-Bung;Kim, Yeong-Jin;Kim, Cheol-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.61-69
    • /
    • 2001
  • EFP(Fitness For Purpose) type defect assessment methodologies based on ECA(Engineering Critical Analysis) have been established and are in use for the structural integrity evaluation of gas pipelines. ECA usually includes the fracture mechanics analysis, and it is assumed that the J-integral uniquely characterizes the crack-tip stress-strain field. However, it has been proven that the J-integral alone can not be sufficient to characterize the crack-tip field under low levels of constraint with a single parameter. Since pipeline structures are made of ductile material, locally loaded in tension, cracks may experience low level of constraint, and therefore, J-dominance will be lost. For this reason, the level of constraint must be quantified to establish a precise assessment procedure for pipeline defects. The objective of this paper is to investigate the fracture behavior of a crack in gas pipeline(KS D 3507) by quantifying the level of constraint. For this purpose, tensile tests and CTOD tests were performed at room temperature(24$\^{C}$) and low temperature(-40$\^{C}$) to obtain the material properties. J-Q analyses were performed for SENB and SENT specimens based on 2-D finite element analyses, in order to investigate the in-plane constraint effects on pipeline defects. For precise assessment of cracks, especially shallow cracks, in KS D 3507 pipeline, constraint effect must be considered.