• Title/Summary/Keyword: Crack reduction

Search Result 431, Processing Time 0.022 seconds

A label-free high precision automated crack detection method based on unsupervised generative attentional networks and swin-crackformer

  • Shiqiao Meng;Lezhi Gu;Ying Zhou;Abouzar Jafari
    • Smart Structures and Systems
    • /
    • v.33 no.6
    • /
    • pp.449-463
    • /
    • 2024
  • Automated crack detection is crucial for structural health monitoring and post-earthquake rapid damage detection. However, realizing high precision automatic crack detection in the absence of corresponding manual labeling presents a formidable challenge. This paper presents a novel crack segmentation transfer learning method and a novel crack segmentation model called Swin-CrackFormer. The proposed method facilitates efficient crack image style transfer through a meticulously designed data preprocessing technique, followed by the utilization of a GAN model for image style transfer. Moreover, the proposed Swin-CrackFormer combines the advantages of Transformer and convolution operations to achieve effective local and global feature extraction. To verify the effectiveness of the proposed method, this study validates the proposed method on three unlabeled crack datasets and evaluates the Swin-CrackFormer model on the METU dataset. Experimental results demonstrate that the crack transfer learning method significantly improves the crack segmentation performance on unlabeled crack datasets. Moreover, the Swin-CrackFormer model achieved the best detection result on the METU dataset, surpassing existing crack segmentation models.

A Basic Studies of the Concrete Crack Reduction-type Structure for Crack Reduction Flaw (구조체 균열 하자 저감을 위한 균열 저감형 콘크리트의 기초적 연구)

  • Park, Hee-Gon;Lee, Ji-Hwan;Park, Ki-Hong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.197-198
    • /
    • 2016
  • The root cause of the crack flaw occurred in construction. This crack is represented by a construction flaw occurs in the concrete structure. Therefore, we introduce the basic properties for the type of concrete to crack reduction measures to minimize the causes flaw this paper.

  • PDF

Crack Retardation byt Load Reduction During Fatigue Crack Propagation (피로균열전파 동안 하중감소에 의한 균열지연)

  • Kim, Hyun-Soo;Nam, Ki-Woo;Ahn, Seok-Hwan;Do, Jae-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2004-2010
    • /
    • 2003
  • Fracture life and crack retardation behavior were examined experimentally using CT specimens of aluminum alloy 5083. Crack retardation life and fracture life were a wide difference. between 0.8 and 0.6 in proportion to ratio of load reduction. The wheeler model retardation parameter was used successfully to predict crack growth behavior. By using a crack propagation rule, prediction of fracture life can be evaluated quantitatively. A statistical approach based on Weibull distribution was applied to the test data to evaluate the dispersion in the retardation life and fracture life by the change of load reduction.

A Study on the Crack Characteristics of the Syntetic Fiber Reinforced Soil (섬유 보강토의 균열 특성 연구)

  • 송창섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.3
    • /
    • pp.59-65
    • /
    • 1999
  • This study has been performed to confirm the three dimensional effect of the crack reduction and the restrained effect of crack growth for the synthetic fiber reinforced soil. Two types of polyrpropylene fiber and low plastic clay(CL) were used for the test. And the test variable were fiber length and so on. The results of the study were summarized as follows ; 1) The mixing of synthetic fiber was effective in reducing crack growth due to adhesion between soil partlcles and synthetic fiber.l Especially initlal crack was delayed, as compared with the pure soil, for about 1 day in case of mono filament synthetic fiber and for about 1 or 2 days in case of fibrillated syntetic fiber. 2) As the content and length of synthetic fiber were increased , the effect of crack reduction was increased. It was found that 0.5% fibrillated synthetic fiber with 40mm length reinforced soil had about 3 times more effective than natural soils. 3) In case of the same fiber content and fiber length, the fibrillated synthetic fiber has nmore effective than the mono filament synthetic fiber for crack reduction.

  • PDF

Watertightness and Crack Reduction Property of Concrete added Fluosilicate Salt Based Inorganic Compound for Watertight Concrete (수밀 콘크리트용 규불화염계 무기 조성물을 첨가한 콘크리트 수밀성 및 균열저감 특성)

  • Kim Da-Su;Khil Bae-Su;Choi Se-Jin;Park Min-Yong;Lee Seong-Yeon;Yeo Byung-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.33-38
    • /
    • 2004
  • This study was performed to know watertightness and reduction effect and crack occurred by hydration heat, restraint of multiplication of hydration heat, through mechanical test, strength test and crack control test using fluosilicate salt based inorganic compound made from by-product during phosphoric acid manufacturing process. Mix proportions for experiment were modulated at 0.45 of water to cement ratio and $0.5-2.0\%$ of adding ratio of fluosilicate salt based inorganic compound. Evaluation for watertightness of concrete was carried out permeability, absorption test and porosity analysis. Effect of crack reduction was evaluated by length, drying shrinkage as well as stress change of hardened concrete at unrestraint/restraint state and also elucidated crack pattern on the concrete surface. It is ascertained that characteristics of crack resistance and watertightness for concrete was improved by an adequate addition of fluosilicate salt based inorganic compound.

  • PDF

Prediction of Fatigue Crack Propagation Life under Constant Amplitude and Overloading Condition (일정진폭 및 과대하중 하에서의 피로 균열 성장 수명 예측)

  • 이억섭;김승권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.113-119
    • /
    • 1998
  • Ship structures and aircraft structures are consisted of thin sheet alloy, so it is very important to understand the characteristics of fatigue crack propagation of that material and to establish the data base. The data for fatigue crack propagation behavior scatter very much even under identical experimental conditions with constant loading. The behavior of fatigue crack propagation under regular and irregular cyclic loadings is known to be highly affected by complicated factors such as plastic zone developed at the vicinity of crack tip and reduction of cross sectional area. In this paper, the controlled stress amplitude and overload fatigue crack propagation tests have been conducted to investigate the effect of varying factors such as plastic zone size near the crack tip and area reduction factor (AF) on the fatigue crack propagation behavior A better simulation of fatigue crack propagation behavior is found to be obtainable by using Wheeler and Willenborg models with AF effect.

  • PDF

A study on the crack characteristics of the Synthetic Fiber reinforced Soil (섬유 보강토의 균열 특성 연구)

  • 송창섭;이신호;반창현;인현식
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.431-437
    • /
    • 1998
  • This study was performed to ascertain the three-dimensional effect of the crack reduction and the restrained effect of crack growth, and to yield a suitable mixing ratio of the synthetic fiber reinforced soil. The results of the study are as follows ; 1) The synthetic fiber has the resisting force for crack because of the adhesion due to the attraction of soil particles. 2) As the synthetic fiber length and the mixing ratio are increased, mono filament synthetic fiber reinforced soil is increased the effects of crack reduction and the restraint of crack growth. 3) The fibrillated synthetic fiber is more effective than mono filament synthetic fiber for crack. 4) A suitable mixing ratio of synthetic fiber reinforced soil is 0.5% of the fibrillated synthetic fiber.

  • PDF

Characterization of Fracture Behavior in Repaired Skin/Stiffener Structure with an Inclined Central Crack

  • Chung, Ki-Hyun;Yang, Won-Ho;Heo, Sung-Pil
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.599-608
    • /
    • 2002
  • Finite element analysis for the stress intensity factor (SIF) at the skin/stiffener structure with inclined central crack repaired by composite stiffened panels is developed. A numerical investigation was conducted to characterize the fracture behavior and crack growth behavior at the inclined crack. In order to investigate the crack growth direction, maximum tangential stress (MTS) criterion are used. Also, this paper is to study the performance of the effective bonded composite patch repair of a plate containing an inclined central through-crack. The main objective of this research is the validation of the inclined crack patching design. In this paper, the reduction of stress intensity factors at the crack-tip and prediction of crack growth direction are determined to evaluate the effects of various non-dimensional design parameter including; composite patch thickness and stiffener distance. We report the results of finite element analysis on the stiffener locations and crack slant angles and discuss them in this paper. The research on cracked structure subjected to mixed mode loading is accomplished and concludes that more work using a different approaches is necessary. The authors hope the present study will aid those who are responsible for the repair of damaged aircraft structures and also provide general repair guidelines.

A Study on the Applicability of Shrinkage Reduction Effect of Light-weight Aggregate Concrete (경량골재 콘크리트의 수축 저감효과에 관한 적용성 연구)

  • Lim, Sang-Jun;Bang, Chang-Joon;Park, Jong-Hyok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.175-176
    • /
    • 2011
  • Applying previous studies performed in the moisture transportation characteristics and shrinkage of lightweight concrete application of shrinkage reduction is to discuss. Applicability of shrinkage reduction effect of lightweight concrete applies for the analysis of PSC girder bridge beam placed on the construction site. Stress of the concrete bridge deck, rebar quantity is calculated by effective elastic modulus method and crack risk is assessed by moisture transport and differential shrinkage analysis. After approximately 10 days maximum tensile stress occurs 6MPa, similar to the case of normal concrete, a maximum tensile stress occurs 3MPa in lightweight concrete and comparing to normal concrete stress was reduced to approximately 50%. Normal and lightweight concrete crack index, respectively, is reduced 1.6 to 1.2, 1.2 to 0.9 in surface and boundary region. Therefore, reduction in shrinkage of concrete were able to confirm reduction of crack risk.

  • PDF

Investigation of vibration and stability of cracked columns under axial load

  • Ghaderi, Masoud;Ghaffarzadeh, Hosein;Maleki, Vahid A.
    • Earthquakes and Structures
    • /
    • v.9 no.6
    • /
    • pp.1181-1192
    • /
    • 2015
  • In this paper, an analytical method is proposed to study the effect of crack and axial load on vibration behavior and stability of the cracked columns. Using the local flexibility model, the crack has been simulated by a torsional spring with connecting two segments of column in crack location. By solving governing eigenvalue equation, the effects of crack parameters and axial load on the natural frequencies and buckling load as well as buckling load are investigated. The results show that the presents of crack cause to reduction in natural frequencies and buckling load whereas this reduction is affected by the location and depth of the crack. Furthermore, the tensile and compressive axial load increase and decrease the natural frequencies, respectively. In addition, as the compression load approaches to certain value, the fundamental natural frequency reaches zero and instability occurs. The accuracy of the model is validated through the experimental data reported in the literature.