• 제목/요약/키워드: Crack Initiation Life

검색결과 186건 처리시간 0.027초

스테인레스강 저주기 피로 수명 분포의 추계적 모델링

  • 이봉훈;이순복
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2000년도 춘계학술대회 발표논문집
    • /
    • pp.213-222
    • /
    • 2000
  • In present study, a stochastic model is developed for the low cycle fatigue life prediction and reliability assessment of 316L stainless steel under variable multiaxial loading. In the proposed model, fatigue phenomenon is considered as a Markov process, and damage vector and reliability are defined on every plane. Any low cycle fatigue damage evaluating method can be included in the proposed model. The model enables calculation of statistical reliability and crack initiation direction under variable multiaxial loading, which are generally not available. In present study, a critical plane method proposed by Kandil et al., maximum tensile strain range, and von Mises equivalent strain range are used to calculate fatigue damage. When the critical plane method is chosen, the effect of multiple critical planes is also included in the proposed model. Maximum tensile strain and von Mises strain methods are used for the demonstration of the generality of the proposed model. The material properties and the stochastic model parameters are obtained from uniaxial tests only. The stochastic model made of the parameters obtained from the uniaxial tests is applied to the life prediction and reliability assessment of 316L stainless steel under variable multiaxial loading. The predicted results show good accordance with experimental results.

  • PDF

환경열화에 의한 가선재의 피로거동 (Fatigue Behavior of Catenary Wires by Environments Degradation)

  • 김용기;장세기
    • 한국철도학회논문집
    • /
    • 제7권1호
    • /
    • pp.14-19
    • /
    • 2004
  • The effect of surface damage on fatigue properties of catenary wires were investigated to estimate their service lift. As surface defects of the wires caused by surface corrosion increase, surface roughness gets worse, and as roughness increases, it is easy for moisture coming from rain and dew to be condensed around uneven parts of the surface. The condensed moisture causes a locally severe corrosion which leads to damage of the wires. Corrosion of catenaty wires can make their actual lifetime shorter than that originally designed. The amount of decrease was more prominent as environmental conditions became more corrosive. They are also vibrated with some amplitude everytime pantographs touch contact line. The frequent cyclic load on the wire may result in a fatigue fracture. Surface damage by corrosion can make formation of crack initiation at fatigue. In the present study, the fatigue life of the used wire was measured 35 to 50% compared with that of new one in average.

응답면기법을 활용한 피로균열진전 신뢰성 평가 (Reliability Assessment of Fatigue Crack Propagation using Response Surface Method)

  • 조태준;김이현;경갑수;최은수
    • 한국강구조학회 논문집
    • /
    • 제20권6호
    • /
    • pp.723-730
    • /
    • 2008
  • 철도교량은 무거운 축하중이 작용하여 구조부재의 전체 강도에서 활하중이 차지하는 비율이 높기 때문에 피로에 의한 손상이 클 뿐만 아니라 계속적으로 변화하는 하중환경에 의해 피로손상이 빠르게 진행될 가능성이 있으므로 이에 대한 안전성을 체계적이고 분석적으로 평가할 수 있는 방법이 요구된다. 철도교량에서 구조부재별 피로균열의 생성위치 및 성장속도는 발생응력의 범위와 횟수, 구조시스템의 강성에 관련되어 있다. 구조시스템의 강성은 계획주체, 설계자, 시공자, 유지관리주체 각각의 특성과 불확실성을 포함하고 있으며, 시간의존적 하중과 저항의 특성에 의해서 추계학적으로 변화하게 된다. 그러므로 이러한 하중 및 저항에서의 각각의 불확실성을 정량적이고 객관적으로 표현할 수 있는 신뢰성에 기초한 평가기법을 개발하였다. 철도 및 지하철교량 등의 피로파괴에 대한 확률론적 평가를 위하여 응답면 기법(Response Surface Method, RSM)과 일계이차 모멘트 기법(First Order Second Moment method, FOSM)을 사용하여 피로균열진전과 잔존수명을 평가하였다. 응력변동 범위를 설계변수로 변화시키면서, 중요한 설계입력 변수로 한계상태 방정식을 구성하고 다양한 피로 수명(100년, 75년 등)후의 파괴확률을 예측하여 설계피로수명에 대한 신뢰성 지수계산 및 발생확률을 분석사례로 제시하였다.

선박 엔진용 Fuel Pump Block 소재(CK35)의 피로파손 원인규명 (A Cause Analysis of Fatigue Failure of Fuel Pump Block Material(CK35) for Marine Engine)

  • 최성종;강창원;김태규
    • 대한기계학회논문집A
    • /
    • 제29권5호
    • /
    • pp.663-670
    • /
    • 2005
  • DIN CK35 (JIS S35CK) steels have been used as a material in fuel pump blocks for marine engines. Failures in the inner surface of a drilling hole, due to the initiation of fatigue cracks have been frequently reported. However, the mechanism initiating these cracks and growths has not been clearly diagnosed yet. This study was conducted using a scraped fuel pump block, containing an initiated fatigue crack in the inner surface of a drilling hole. Initially, the cracks and fractured surfaces inside the block were investigated using an optical microscope and a SEM (Scanning Electron Microscope). In addition, microstructure observation, fatigue life test and fatigue crack growth test were performed using a specimen, which was taken from the same block. Results from these tests are summarized as follows; (1) The early crack in the block was supposed to occur inside the inner surface of the drilling hole. (2) The fatigue endurance of this material was about 330 Mpa. (3) The early crack was generated in the cavitations created by the breakdown of a big inclusion, or separation between the big inclusion and the base metal, in which the fundamental ingredients of the inclusion were C, 5, and Mn. (4) In order to prevent these types of failures, the suppression of inclusions inflow by improving the casting process, formation of fine inclusions by applying a heat treatment process, and coating of the surface of the drilling hole were required.

운전하중하의 레인플로집계법을 이용한 화차 대차의 피로누적손상과 수명예측 (Fatigue Cumulative Damage and Life Prediction of Freight Bogie using Rainflow Counting Method under Service Loading)

  • 전주헌;백석흠;이경영;조석수;주원식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.114-119
    • /
    • 2004
  • Endbeam is an important structural member of freight bogie for the support of service loading. In general, more than 25 years' durability is necessary. However, endbeam occur fatigue fracture in dynamic stress concentration location because comparatively strength and stiffness are low. Therefore, structure analysis is performed to evaluate structural problem of endbeam and local strain range as durability analysis. The number of cycles is extracted concerning the bogie in operation by measurement dynamic stress time history on critical part which is crack initiation in actual fact. At this time rainflow cycle counting is used to consider change of stress for operating condition. Based on the fatigue life curves and the stress analysis, the fatigue life of the endbeam is predicted and compared with the experimentally determined fatigue life, resulting in a fairly good correlation.

  • PDF

잠수함 압력선체의 피로강도에 대한 실험적 연구 (Experimental Investigations on the Fatigue Strength of the Submarine Pressure Hull)

  • 김을년;김국빈;전재황
    • 대한조선학회논문집
    • /
    • 제47권1호
    • /
    • pp.67-75
    • /
    • 2010
  • Submarine and deep sea diving structures are generally designed based on their ultimate strength. Fatigue strength at welded joint must be also taken into account because working stress is increased due to the increasing of diving depth and using high yield steel. The pressure hulls of submarine are subjected to fluctuating compressive loading. But in addition to the calculated stresses, high residual tensile stresses at welded part have to be considered. The state of stress level of pressure hull is tensile at surface and compressive at deep diving depth. This paper presents the results of an experimental investigation on the crack initiation and growth at the weld toe of T welded joints of HY-100 steel plate under constant amplitude loading. It is also investigated the phenomenon of the fatigue failure and test methods. Fatigue tests have been using real scaled local structural models of full penetration T-welded joint, which is a part of the cylindrical shell structures reinforced by ring stiffeners. Several load ratios under constant amplitude loading are considered in the tests. Crack initiation and growth characteristics are examined based on the beach marks of the cracked section of the test specimens. A design stress-life curve including the design formula is suggested according to tested data.

TIG 용접한 저방사화 페라이트강 (JLF-1)의 고온강도 및 피로수명특성 (High Temperature Tensile Strength and Fatigue Life Characteristics for Reduced Activation Ferritic Steel (JLF-1) by TIG Welding)

  • 윤한기;이상필;김사웅
    • 대한기계학회논문집A
    • /
    • 제27권9호
    • /
    • pp.1444-1450
    • /
    • 2003
  • The fatigue life and tensile strength of JLF-1 steel (Fe-9Cr-2W-V-Ta) and its TIG weldment were investigated at the room temperature and $400^{\circ}C$. Four kinds of test specimens, which associated with the rolling direction and the TIG welding direction were machined. The base metal of JLF-1 steel represented almost anisotropy in the tensile properties for the rolling direction. And the base metal of JLF-1 steel showed lower strength than that of TIG weldment. Also, the strength of all materials entirely decreased in accordance with elevating test temperature. Moreover, the fatigue limit of weld metal was largely increase than that of base metal at both temperatures. The fatigue limit of JLF-1 steel decreased in accordance with elevating test temperature. The fatigue limit of JLF-1 steel decreased in accordance with elevating test temperature. The SEM fractography of tensile test specimen showed conspicuous cleavage fracture of a radial shape. In case of fatigue life test specimen, there were so many striations at crack initiation region, and dimple was observed at final fracture region as a ductile fracture mode.

연속체 손상역학을 이용한 용접구조물의 수치피로시험기법 (Numerical Fatigue Test Method of Welded Structures Based on Continuum Damage Mechanics)

  • 이치승;김영환;김태우;유병문;이제명
    • Journal of Welding and Joining
    • /
    • 제26권3호
    • /
    • pp.67-73
    • /
    • 2008
  • Fatigue life evaluation of welded structures in a range of high cycles is one of the most difficult problems since extremely small plastic deformation and damage occur during the loading cycles. Moreover, it is very difficult to identify the strong non-linearities of welding, inducing residual stress. In this paper, numerical fatigue test method for welded structures was developed using continuum damage mechanics with inherent strain. Recently, continuum damage mechanics, which can simulate both crack initiation at the micro-scale level and crack propagation at the meso-scale level, has been adopted in the fracture related problem. In order to consider the residual stresses in the welded strictures, damage calculation in conjunction with welding, inducing inherent strain, was proposed. The numerical results obtained from the damage calculation were compared to experimental results.

STS 304 강의 저주기 및 고주기 피로에 있어 초기 마르텐사이트의 영향 (The Effect of Initial α' on Low and High Cycle Fatigue Behavior of STS 304 Stainless Steel)

  • 이현승;신형주;김송희
    • 산업기술연구
    • /
    • 제21권B호
    • /
    • pp.331-339
    • /
    • 2001
  • Zero to tension fatigue tests and strain controlled fatigue tests were carried out to find how initial strain induced martensite, ${\alpha}^{\prime}$ affects low and high cycle fatigue behavior and fatigue crack growth mechanisms. Microscopic study and phase analysis were carried out with TEM, SEM, EDAX, Optical Microscope, Ferriscope, and X-ray diffractometry. The amount of Initial ${\alpha}^{\prime}$ was controlled from 0% to 33% by controlling the temperatures for cold working and heat treatment. Lower contents of initial ${\alpha}^{\prime}$ showed higher fatigue resistance in low cycle fatigue but lower fatigue resistance in high cycle fatigue because it is ascribed to the more transformation of ${\alpha}^{\prime}$ martensite during low cycle fatigue and higher ductility. In high cycle fatigue, fatigue life is attributed to the strength and phase transformation of austenite into ${\alpha}^{\prime}$ during fatigue was negligible. ${\gamma}$ boundary, ${\gamma}/twin$ boundary, and ${\gamma}/{\alpha}^{\prime}$ boundary were found to be the preferred site of fatigue crack initiation.

  • PDF

FE simulation of S-N curves for a riveted connection using two-stage fatigue models

  • Correia, Jose A.F.O.;de Jesus, Abilio M.P.;Silva, Antonio L.L.;Pedrosa, Bruno;Rebelo, Carlos;Calcada, Rui A.B.
    • Advances in Computational Design
    • /
    • 제2권4호
    • /
    • pp.333-348
    • /
    • 2017
  • Inspections of ancient metallic bridges have illustrated fatigue cracking in riveted connections. This paper presents a comparison between two alternative finite element (FE) models proposed to predict the fatigue strength of a single shear and single rivet connection. The first model is based on solid finite elements as well as on contact elements, to simulate contact between the components of the connection. The second model is built using shell finite elements in order to model the plates of the riveted connection. Fatigue life predictions are carried out for the shear splice, integrating both crack initiation and crack propagation lives, resulting from the two alternative FE models. Global fatigue results, taking into account several clamping stresses on rivet, are compared with available experimental results. Proposed comparisons between predictions and experimental data illustrated that the proposed two-stage model yields consistent results.