• 제목/요약/키워드: Cr-Al alloy

검색결과 237건 처리시간 0.026초

The Electrochemical Behavior of Ni-base Metallic Glasses Containing Cr in H2SO4 Solutions

  • Arab, Sanaa.T.;Emran, Khadijah.M.;Al-Turaif, Hamad A.
    • 대한화학회지
    • /
    • 제56권4호
    • /
    • pp.448-458
    • /
    • 2012
  • In order to develop alloy resistance in aggressive sulphat ion, the corrosion behavior of metallic glasses $Ni_{92{\cdot}3}Si_{4.5}B_{32}$, $Ni_{82,3}Cr_7Fe_3Si_{4.5}B_{3.2}$ and $Ni_{75.5}Cr_{13}Fe_{4.2}Si_{4.5}B_{2.8}$ (at %) at different concentrations of $H_2SO_4$ solutions was examined by electrochemical methods and Scanning Electron Microscope (SEM) and X-ray Photoelectron Microscopy (XPS) analyses. The corrosion kinetics and passivation behavior was studied. A direct proportion was observed between the corrosion rate and acid concentration in the case of $Ni_{92{\cdot}3}Si_{4.5}B_{32}$ and $Ni_{75.5}Cr_{13}Fe_{4.2}Si_{4.5}B_{2.8}$ alloys. Critical concentration was observed in the case of $Ni_{82,3}Cr_7Fe_3Si_{4.5}B_{3.2}$ alloy. The influence of the alloying element is reflected in the increasing resistance of the protective film. XPS analysis confirms that the protection film on the $Ni_{92{\cdot}3}Si_{4.5}B_{32}$ alloy was NiS which is less protective than that formed on Cr containing alloys. The corrosion rate of $Ni_{82,3}Cr_7Fe_3Si_{4.5}B_{3.2}$ and $Ni_{75.5}Cr_{13}Fe_{4.2}Si_{4.5}B_{2.8}$. alloys containing 7% and 13% Cr are $7.90-26.1{\times}10^{-3}$ mm/y which is lower about 43-54 times of the alloy $Ni_{92{\cdot}3}Si_{4.5}B_{32}$ (free of Cr). The high resistance of $Ni_{75.5}Cr_{13}Fe_{4.2}Si_{4.5}B_{2.8}$ alloy at the very aggressive media may due to thicker passive film of $Cr_2O_3$ which hydrated to hydrated chromium oxyhydroxide.

BCC계 Ti-Cr-V 합금의 전기화학적 특성에 미치는 Mn 및 $AB_5$계 합금 첨가 효과 (Effects of the Addition of Mn and $AB_5$ Type Alloy on the Electrochemical Characteristics of Ti-Cr-V BCC Type Alloys)

  • 김종연;유정현;박충년;박찬진;최전;조성욱
    • 한국수소및신에너지학회논문집
    • /
    • 제18권1호
    • /
    • pp.52-59
    • /
    • 2007
  • We investigated the effects of the addition of Mn and $AB_5$ type alloy on the electrochemical characteristics of Ti-Cr-V BCC type alloys as anode materials for Ni-MH battery. The activation behavior and discharge capacity of the BCC type alloys were significantly improved by ball-milling with the $LmNi_{4.1}Al_{0.25}Mn_{0.3}Co_{0.65}$ alloy, because the $AB_5$ type alloy acted as hydrogen path on the surface of the BCC type alloy. Among the Mn substituted alloys($Mn=0.03%{\sim}0.08%$), the $Ti_{0.32}Cr_{0.38}Mn_{0.05}V_{0.25}$ alloy ball-milled with $AB_5$ type alloy exhibited the greatest discharge capacity of $336\;mAh{\cdot}g^{-1}$. In addition, Mn substituted alloys exhibited the lower plateau pressure in P-C- T curve, the better hydrogen storage capacity and faster surface activation compared with the alloy without Mn.

Evaluation of shear bond strength of repair acrylic resin to Co-Cr alloy

  • Kulunk, Safak;Kulunk, Tolga;Sarac, Duygu;Cengiz, Seda;Baba, Seniha
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권4호
    • /
    • pp.272-277
    • /
    • 2014
  • PURPOSE. The purpose of this study was to investigate the impact of different surface treatment methods and thermal ageing on the bond strength of autopolymerizing acrylic resin to Co-Cr. MATERIALS AND METHODS. Co-Cr alloy specimens were divided into five groups according to the surface conditioning methods. C: No treatment; SP: flamed with the Silano-Pen device; K: airborne particle abrasion with $Al_2O_3$; Co: airborne particle abrasion with silica-coated $Al_2O_3$; KSP: flamed with the Silano-Pen device after the group K experimental protocol. Then, autopolymerized acrylic resin was applied to the treated specimen surfaces. All the groups were divided into two subgroups with the thermal cycle and water storage to determine the durability of the bond. The bond strength test was applied in an universal test machine and treated Co-Cr alloys were analyzed by scanning electron microscope (SEM). Two-way analysis of variance (ANOVA) was used to determine the significant differences among surface treatments and thermocycling. Their interactons were followed by a multiple comparison' test performed uing a post hoc Tukey HSD test (${\alpha}=.05$). RESULTS. Surface treatments significantly increased repair strengths of repair resin to Co-Cr alloy. The repair strengths of Group K, and Co significantly decreased after 6,000 cycles (P<.001). CONCLUSION. Thermocycling lead to a significant decrease in shear bond strength for air abrasion with silica-coated aluminum oxide particles. On the contrary, flaming with Silano-Pen did not cause a significant reduction in adhesion after thermocycling.

Ni-Cr계 고용강화형 합금에서 조성에 따른 기계적 및 고온부식 특성 평가 (Effects of alloying elements on the mechanical and high temperature corrosion properties of solid-solution hardening nickel-base alloy)

  • 정수진;김동진
    • Corrosion Science and Technology
    • /
    • 제13권5호
    • /
    • pp.178-185
    • /
    • 2014
  • Alloy 617 is considered as a candidate Ni-based superalloy for the intermediate heat exchanger (IHX) of a very high-temperature gas reactor (VHTR) because of its good creep strength and corrosion resistance at high temperatures. Helium is used as a coolant in a VHTR owing to its high thermal conductivity, inertness, and low neutron absorption. However, helium inevitably includes impurities that create an imbalance in the surface reactivity at the interface of the coolant and the exposed materials. As the Alloy 617 has been exposed to high temperatures at $950^{\circ}C$ in the impure helium environment of a VHTR, the degradation of material is accelerated and mechanical properties decreased. The high-temperature strength, creep, and corrosion properties of the structural material for an IHX are highly important to maintain the integrity in a harsh environment for a 60 year period. Therefore, an alloy superior to alloy 617 should be developed. In this study, the mechanical and high-temperature corrosion properties for Ni-Cr alloys fabricated in the laboratory were evaluated as a function of the grain boundary strengthening and alloying elements. The ductility increased and decreased by increasing the amount of Mo and Cr, respectively. Surface oxide was detached during the corrosion test, when Al was not added to alloy. However the alloy with Al showed improved oxide adhesive property without significant degradation and mechanical property. Aluminum seems to act as an anti-corrosive role in the Ni-based alloy.

비귀금속 산화물이 치과용 합금과 도재의 화학적 결합에 미치는 영향 (Effects of Nonprecious Metallic Oxide on the Chemical Bonding Between Dental Alloy and Porcelain)

  • 김광남;조성암
    • 대한치과보철학회지
    • /
    • 제25권1호
    • /
    • pp.317-325
    • /
    • 1987
  • A study on the shear bonding strength between dental alloy and porcelain according to various kidns of sputtered metallic thin films was established by Ingtron universal testing machine, and the change of the elemental weight % at the surface of dental alloy was studied by E.D.S. The kind of metallic thin films were Al, Ni, In, Cr. Ti and Sn with $0.3{\mu}m$ thickness. The dental alloys were Verabond made by Aalba Dent. Co. and Degudent H manufactured by Degussa Co. The control groups were Verabond and Degudent H. The obtained results were as follows; 1. The shear bonding strength of Al plated sample was the strongest of all. 2. The shear bonding strength of Ni plated sample was stronger than that of Degudent H, Sn plated samples. 3. The shear bonding strength of Verabond was weaker than that of Al, Ni, In, Cr, plated samples. 4. After degassing, it is more weight % of Ni at the alloy surface of the Ni sputtered specimen than the Sn sputtered sample.

  • PDF

Al-Mg 코팅층의 구조가 강판 내식성에 미치는 영향 (Effect of the Coating Structure on the Corrosion Resistance of Al-Mg Coated Steel)

  • 정재훈;양지훈;김성환;변인섭;정재인;이명훈
    • 한국표면공학회지
    • /
    • 제49권5호
    • /
    • pp.454-460
    • /
    • 2016
  • Double-layered Al-Mg films have been deposited by using an e-beam deposition method on a cold-rolled steel sheet(CR), which the structure of the film was Al/Mg/CR. The micro-structure, alloy phase, and corrosion resistance of the Al-Mg coated CR were investigated before and after heat treatment at $400^{\circ}C$ for 2, 3, and 10 min in a nitrogen atmosphere. Total thickness of Al-Mg films was fixed at $3{\mu}m$ and the thickness ratio of Al and Mg layers(Al:Mg) has been changed from 5:1 to 1:5. The cross-sectional morphology of the films, which had the thickness ratio of 2:1(Al:Mg), 1:1, and 1:2, was changed after heat treatment from columnar to featureless structure. The x-ray diffraction data for as-deposited films showed only pure Al and Mg peaks. Al-Mg alloy peaks such as $Al_3Mg_2$ and $Al_{12}Mg_{17}$ phase appeared after the heat treatment. The Al-Mg coating with the thickness ratio of 1:1(Al:Mg) showed the best corrosion resistance of up to 500 hours by salt spray test.

베릴륨(Be)이 미 첨가된 치과도재소부용 Ni-Cr-Mo계 합금의 미세조직 및 기계적 성질 특성 (Microstructures and Mechanical Properties of Beryllium(Be)-free Ni-Cr-Mo based Alloys for Metal-Ceramic Crown)

  • 송경우;고은경;이정환;정종현;노학;한재익
    • 대한치과기공학회지
    • /
    • 제28권2호
    • /
    • pp.321-329
    • /
    • 2006
  • The popularity of Ni-Cr-Mo based metal alloys for metal-ceramic crown have increased recently because of low price, superior yield strength and rigidity. the use of these alloys give them the potential advantage of thinner copping with the required rigidity for long span bridges. The purpose of this study was to assess the microstructures and mechanical properties of Ni-Cr-Mo-(Si,Al,Nb,Zr,Ti.Cu,Mm) based Alloys not containing beryllium(Be) related toxic effects. The abtained results indicated that as-cast these specimen alloys showed compositional and microstructural differences, and mechanical properties values of Ni69Cr20Mo5Si2Al4 alloy among these specimen alloys was found to be superior to those of commercial Ni-Cr based alloy using in market place today.

  • PDF

Impact Tensile Properties and Intergranular Fracture Behavior with Strain Rate Variations of Al-M g-X (X = Cr,Si) Alloy

  • Chang-Suk Han;Min-Gyu Chun;Sung-Soon Park;Seung-In Lim
    • 한국재료학회지
    • /
    • 제34권7호
    • /
    • pp.330-340
    • /
    • 2024
  • Al-Mg-Si alloys are light weight and have excellent corrosion resistance, and are attracting attention as a liner material for high-pressure hydrogen containers in hydrogen fuel cell vehicles. Because it has excellent plastic hardening properties, it is also applied to car body panel materials, but it is moderate in strength, so research to improve the strength by adding Si-rich or Cu is in progress. So far, the authors have conducted research on the intergranular fracture of alloys with excessive Si addition from the macroscopic mechanical point of view, such as specimen shape. To evaluate their impact tensile properties, the split-Hopkinson bar impact test was performed using thin plate specimens of coarse and fine grain alloys of Al-Mg-X (X = Cr,Si) alloy. The effect of the shape of the specimen on the characteristics was studied through finite element method (FEM) analysis. As a result, it was found that the intergranular fracture of the alloy with excessive Si depended on the specimen width (W)/grain size (d), which can be expressed by the specimen size and grain size. As W/d decreases, the intergranular fracture transforms into a transgranular fracture. As the strain rate increases, the fracture elongation decreases, and the fracture surface of the intergranular fracture becomes more brittle. It was confirmed that intergranular fracture occurred in the high strain rate region even in materials with small grain sizes.

Elevated Temperature Strength and Microstructure of Atomized and Ball-milled Al-xFe-yCr Alloys

  • Kim, Kyeong-Hwan;Chun, Byong-Sun
    • 한국분말재료학회지
    • /
    • 제7권4호
    • /
    • pp.197-204
    • /
    • 2000
  • Gas atomization mechanical alloying and hot pressing have successfully made high temperature Al-9.45Fe-4.45Cr alloy. The microstructure and mechanical properties of this alloy has been studied by using optical microscope, scanning electron microscope, transmission electron microscope, X-ray diffractometer and compressive tester. It contains high concentration of transition elements of Fe and Cr, which form thermally stable dispersoids in the aluminum matrix. Proper oxidation of powders during ball milling strengthens the bulk extrudates by providing the obstacle particles. The oxide particles are very chemically and thermally stable and prevent the coarsening of the intermediate compounds.

  • PDF