Effects of the Addition of Mn and $AB_5$ Type Alloy on the Electrochemical Characteristics of Ti-Cr-V BCC Type Alloys

BCC계 Ti-Cr-V 합금의 전기화학적 특성에 미치는 Mn 및 $AB_5$계 합금 첨가 효과

  • Kim, J.Y. (Department of Materials Science and Engineering, Chonnam National University) ;
  • You, J.H. (Department of Materials Science and Engineering, Chonnam National University) ;
  • Park, C.N. (Department of Materials Science and Engineering, Chonnam National University) ;
  • Park, C.J. (Department of Materials Science and Engineering, Chonnam National University) ;
  • Choi, J. (Department of Advanced Materials Engineering, Hanlyo University) ;
  • Cho, S.W. (Korea Institute of Geoscience and Mineral Resources)
  • 김종연 (전남대학교 신소재공학과) ;
  • 유정현 (전남대학교 신소재공학과) ;
  • 박충년 (전남대학교 신소재공학과) ;
  • 박찬진 (전남대학교 신소재공학과) ;
  • 최전 (한려대학교 신소재공학과) ;
  • 조성욱 (한국지질자원연구소)
  • Published : 2007.03.15

Abstract

We investigated the effects of the addition of Mn and $AB_5$ type alloy on the electrochemical characteristics of Ti-Cr-V BCC type alloys as anode materials for Ni-MH battery. The activation behavior and discharge capacity of the BCC type alloys were significantly improved by ball-milling with the $LmNi_{4.1}Al_{0.25}Mn_{0.3}Co_{0.65}$ alloy, because the $AB_5$ type alloy acted as hydrogen path on the surface of the BCC type alloy. Among the Mn substituted alloys($Mn=0.03%{\sim}0.08%$), the $Ti_{0.32}Cr_{0.38}Mn_{0.05}V_{0.25}$ alloy ball-milled with $AB_5$ type alloy exhibited the greatest discharge capacity of $336\;mAh{\cdot}g^{-1}$. In addition, Mn substituted alloys exhibited the lower plateau pressure in P-C- T curve, the better hydrogen storage capacity and faster surface activation compared with the alloy without Mn.

Keywords

References

  1. E. Akiba and H. Iba, 'Hydrogen absorption by Laves phase related BCC solid solution', Intermetallics, Vol. 6, No.6, 1998, p. 461 https://doi.org/10.1016/S0966-9795(97)00088-5
  2. Jeong Yub Lee, Jong Hoon Kim and Hyuck Mo Lee, 'Effect of Mo and Nb on the phase equilibrium of the Ti -Cr-V ternary system in the non-burning $\beta$-Ti alloy region', J. Alloy. Compd., Vol. 297, No. 1-2, 2000, p. 231 https://doi.org/10.1016/S0925-8388(99)00557-5
  3. S. W. Cho, C. S. Han, C. N. Park and E. Akiba, 'The hydrogen storage characteristics of Ti-Cr-V alloys', J. Alloy. Compd., Vol. 288, No. 1-2, 1999, p. 294 https://doi.org/10.1016/S0925-8388(99)00096-1
  4. K. Kubo, H. Itoh, T. Takahashi, T. Ebisawa, T. Kabutomori, Y. Nakamura and E. Akiba, 'Hydrogen absorbing properties and structures of Ti-Cr-Mo alloys', J. Alloy. Compd., Vol. 356-357, p. 452
  5. 유정현, 조성욱, 박충년, 최전, 'Ti-Cr-Mo계 및 Ti-Cr-V계 bcc합금의 수소저장특성에 관한 연구', 한국수소 및 신에너지학회논문집, Vol. 16, No.2, 2005, p. 122
  6. X. B. Yu, Z. Wu, B. J. Xia and N. X. Xu, 'Enhancement of hydrogen storage capacity of Ti-V-Cr-Mn BCC phase alloys', J. Alloy.Compd., Vol. 372, No. 1-2, 2004, p. 272 https://doi.org/10.1016/j.jallcom.2003.09.153
  7. X. B. Yu, Z. Wu, B. J. Xia and N. X. Xu, 'Improvement of activation performance of the quenched Ti-V-based BCC phase alloys', J. Alloy. Compd., Vol. 386, No. 1-2, p. 258 https://doi.org/10.1016/j.jallcom.2004.05.014
  8. P. H. L. Notten, E. Verbitskiy, W. S. Kruijt,and H. J. Bergveld, 'Oxygen evolution and recombination kinetics inside sealed rechargeable, Ni-based batteries', J. Electrochem. Soc. Vol. 152, 2005, A1423 https://doi.org/10.1149/1.1921849
  9. M. A. Fetcenko, S. Venkatesan, Presented at ECS Meeting, Phoenix, October 15, 1991
  10. M. Matsuoka, K. Asai, K. Asai, Y. Fukumoto and Chiaki Iwakura, 'Electrochemical characterization of surface-modified negative electrodes consisting of hydrogen storage alloys', J. Alloy. Compd., Vol. 192, No. 1-2, 1993, p. 149 https://doi.org/10.1016/0925-8388(93)90214-8
  11. 박준영, 박충년, 최전, 'ABs계 수소저장합금의 Zr, Ti 및 V 첨가에 따른 전기 화학적특성', 한국수소 및 신에너지학회논문집, Vol. 17, No.1, 2006, p. 31