• Title/Summary/Keyword: Cr layer

Search Result 810, Processing Time 0.026 seconds

Plugging and Re-opening Phenomena of the 5Cr-1Mo Steel Leak Hole by Water Leakage in Sodium Atmosphere (소듐 분위기에서 물누출에 의한 5Cr-1Mo Ferrite강 구멍의 막힘과 재개방 현상)

  • Jeong, Kyung-Chai;Kim, Tae-Joon;Choi, Jong-Hyeun;Park, Jin-Ho;Hwang, Sung-Tai
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.674-679
    • /
    • 1998
  • Small water leak experiment was carried out in liquid sodium atmosphere using a specimen of ferrite steel, which will be expected to be a material of the heat transfer tube of liquid metal fast breeder reactor. Self-plugging phenomena of leak path could be explained by the products of reaction and corrosion by sodium-water reaction. Also, re-opening mechanism of self-plugged path could be explained by the thermal transient and vibration of heat transfer tube. As a result, perfect re-opening time of self-plugged leak path was observed to be 129 minutes after water leak initiation. Re-opening shape of a specimen was appeared with double layer of circular type, and re-opening size of this specimen surface was about 2 mm diameter on sodium side.

  • PDF

Friction Behavior of High Velocity Oxygen Fuel (HVOF) Thermal Spray Coating Layer of Nano WC-Co Powder

  • Cho, T.Y.;Yoon, J.H.;Kim, K.S.;Fang, W.;Joo, Y.K.;Song, K.O.;Youn, S.J.;Hwang, S.Y.;Chun, H.G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.4
    • /
    • pp.170-174
    • /
    • 2007
  • High Velocity Oxygen Fuel (HVOF) thermal spray coating of nano size WC-Co powder (nWC-Co) has been studied as one of the most promising candidate for the possible replacement of the traditional hard plating in some area which causes environmental and health problems. nWC-Co powder was coated on Inconel 718 substrates by HVOF technique. The optimal coating process obtained from the best surface properties such as hardness and porosity is the process of oxygen flow rate (FR) 38 FMR, hydrogen FR 57 FMR and feed rate 35 g/min at spray distance 6 inch for both surface temperature $25^{\circ}C\;and\;500^{\circ}C$. In coating process a small portion of hard WC decomposes to less hard $W_2C$, W and C at the temperature higher than its decomposition temperature $1,250^{\circ}C$ resulting in hardness decrease and porosity increase. Friction coefficient increases with increasing coating surface temperature from 0.55-0.64 at $25^{\circ}C$ to 0.65-0.76 at $500^{\circ}C$ due to the increase of adhesion between coating and counter sliding surface. Hardness of nWC-Co is higher or comparable to those of other hard coatings, such as $Al_2O_3,\;Cr,\;Cr_2O_3$ and HVOF Tribaloy 400 (T400). This shows that nWC-Co is recommendable for durability improvement coating on machine components such as high speed spindle.

Effects of Proton Irradiation on the Microstructure and Surface Oxidation Characteristics of Type 316 Stainless Steel (양성자 조사가 316 스테인리스강의 미세조직과 표면산화 특성에 미치는 영향)

  • Lim, Yun-Soo;Kim, Dong-Jin;Hwang, Seong Sik;Choi, Min Jae;Cho, Sung Whan
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.158-168
    • /
    • 2021
  • Austenitic 316 stainless steel was irradiated with protons accelerated by an energy of 2 MeV at 360 ℃, the various defects induced by this proton irradiation were characterized with microscopic equipment. In our observations irradiation defects such as dislocations and micro-voids were clearly revealed. The typical irradiation defects observed differed according to depth, indicating the evolution of irradiation defects follows the characteristics of radiation damage profiles that depend on depth. Surface oxidation tests were conducted under the simulated primary water conditions of a pressurized water reactor (PWR) to understand the role irradiation defects play in surface oxidation behavior and also to investigate the resultant irradiation assisted stress corrosion cracking (IASCC) susceptibility that occurs after exposure to PWR primary water. We found that Cr and Fe became depleted while Ni was enriched at the grain boundary beneath the surface oxidation layer both in the non-irradiated and proton-irradiated specimens. However, the degree of Cr/Fe depletion and Ni enrichment was much higher in the proton-irradiated sample than in the non-irradiated one owing to radiation-induced segregation and the irradiation defects. The microstructural and microchemical changes induced by proton irradiation all appear to significantly increase the susceptibility of austenitic 316 stainless steel to IASCC.

Investigation on Microstructure and Flowability of Gas Atomized Heat-resistant KHR45A Alloy Powders for Additive Manufacturing

  • Geonwoo Baek;Mohsen Saboktakin Rizi;Yeeun Lee;SungJae Jo;Joo-Hyun Choi;Soon-Jik Hong
    • Journal of Powder Materials
    • /
    • v.30 no.1
    • /
    • pp.13-21
    • /
    • 2023
  • In additive manufacturing, the flowability of feedstock particles determines the quality of the parts that are affected by different parameters, including the chemistry and morphology of the powders and particle size distribution. In this study, the microstructures and flowabilities of gas-atomized heat-resistant alloys for additive manufacturing applications are investigated. A KHR45A alloy powder with a composition of Fe-30Cr-40Mn-1.8Nb (wt.%) is fabricated using gas atomization process. The microstructure and effect of powder chemistry and morphology on the flow behavior are investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and revolution powder analysis. The results reveal the formation of spherical particles composed of single-phase FCC dendritic structures after gas atomization. SEM observations show variations in the microstructures of the powder particles with different size distributions. Elemental distribution maps, line scans, and high-resolution XPS results indicate the presence of a Si-rich oxide accompanied by Fe, Cr, and Nb metal oxides in the outer layer of the powders. The flowability behavior is found to be induced by the particle size distribution, which can be attributed to the interparticle interactions and friction of particles with different sizes.

Habitability evaluation considering various input parameters for main control benchboard fire in the main control room

  • Byeongjun Kim ;Jaiho Lee ;Seyoung Kim;Weon Gyu Shin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4195-4208
    • /
    • 2022
  • In this study, operator habitability was numerically evaluated in the event of a fire at the main control bench board (MCB) in a reference main control room (MCR). It was investigated if evacuation variables including hot gas layer temperature (HGLT), heat flux (HF), and optical density (OD) at 1.8 m from the MCR floor exceed the reference evacuation criteria provided in NUREG/CR-6850. For a fire model validation, the simulation results of the reference MCR were compared with existing experimental results on the same reference MCR. In the simulation, various input parameters were applied to the MCB panel fire scenario: MCR height, peak heat release rate (HRR) of a panel, number of panels where fire propagation occurs, fire propagation time, door open/close conditions, and mechanical ventilation operation. A specialized-average HRR (SAHRR) concept was newly devised to comprehensively investigate how the various input parameters affect the operator's habitability. Peak values of the evacuation variables normalized by evacuation criteria of NUREG/CR-6850 were well-correlated as the power function of the SAHRR for the various input parameters. In addition, the evacuation time map was newly utilized to investigate how the evacuation time for different SAHRR was affected by changing the various input parameters. In the previous studies, it was found that the OD is the most dominant variable to determine the MCR evacuation time. In this study, however, the evacuation time map showed that the HF is the most dominant factor at the condition of without-mechanical ventilation for the MCR with a partially-open false ceiling, but the OD is the most dominant factor for all the other conditions. Therefore, the method using the SAHRR and the evacuation time map was very useful to effectively and comprehensively evaluate the operator habitability for the various input parameters in the event of MCB fires for the reference MCR.

Study on the Elemental Diffusion Distance of a Pure Nickel Layer Additively Manufactured on 316H Stainless Steel (316H 스테인리스 강 위에 적층 제조된 순수 니켈층의 원소 확산거리 연구)

  • UiJun Ko;Won Chan Lee;Gi Seung Shin;Ji-Hyun Yoon;Jeoung Han Kim
    • Journal of Powder Materials
    • /
    • v.31 no.3
    • /
    • pp.220-225
    • /
    • 2024
  • Molten salt reactors represent a promising advancement in nuclear technology due to their potential for enhanced safety, higher efficiency, and reduced nuclear waste. However, the development of structural materials that can survive under severe corrosion environments is crucial. In the present work, pure Ni was deposited on the surface of 316H stainless steel using a directed energy deposition (DED) process. This study aimed to fabricate pure Ni alloy layers on an STS316H alloy substrate. It was observed that low laser power during the deposition of pure Ni on the STS316H substrate could induce stacking defects such as surface irregularities and internal voids, which were confirmed through photographic and SEM analyses. Additionally, the diffusion of Fe and Cr elements from the STS316H substrate into the Ni layers was observed to decrease with increasing Ni deposition height. Analysis of the composition of Cr and Fe components within the Ni deposition structures allows for the prediction of properties such as the corrosion resistance of Ni.

Effect of the Amount of CH4 Content on the Characteristics of Surface Layers of Low Temperature Plasma Nitrocarburizied STS 204Cu Stainless Steel (STS 204Cu 스테인리스강의 저온 플라즈마 침질탄화 처리 시 CH4 가스 함량에 따른 경화층 (S-Phase) 거동)

  • Lee, Insup;Kim, Hojun
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.1
    • /
    • pp.54-61
    • /
    • 2018
  • Plasma Nitriding treatment was performed on STS 204Cu stainless steel samples at a temperature of $400^{\circ}C$ for 15 hours with varying $N_2$ content as 10%, 15% and 25%. Regardless of the content of $N_2$, S-Phase which is a hardened layer of Nitrogen (N) supersaturated phase, was formed in the surface of plasma treated samples. When $N_2$ content was 25%, the thickness of the hardened layer reached up to about $7{\mu}m$ and the surface hardness reached a value of $560Hv_{0.05}$, which is about 2.5 times higher than that of untreated sample (as received $220Hv_{0.05}$). From potentiodynamic polarization test, it was observed that compared to as received sample, the corrosion potential and the corrosion current density of the plasma treated samples were decreased regardless of the $N_2$ content, but the corrosion resistance was not increased much due to the precipitation of $Cr_2N$. On the other hand, pitting potential of the samples treated with 10% and 15% $N_2$ was higher than that of as received sample, however, the samples treated with 25% exhibited a lower pitting potential. Therefore, 10% $N_2$ content was selected as optimum plasma nitriding condition and to further increase both the thickness and surface hardness and the corrosion resistance of the hardened layer, different $CH_4$ content such as 1%, 3% and 5% was introduced into the plasma nitriding atmosphere. With 1% $CH_4$, the thickness of the hardened layer reached up to about $11{\mu}m$ and the surface hardness was measured as about $620Hv_{0.05}$, which is about 2.8 times that of as received sample. And the corrosion resistance of the plasma treated sample by using 1% $CH_4$ was improved significantly due to much higher pitting potential, and lower corrosion current density. When the $CH_4$ content was more than 1%, the thickness and surface hardness of the hardened layer decreased slightly and the corrosion resistance also decreased.

Development of LSM-Coated Crofer Mesh for Current Collectors in Solid Oxide Fuel Cells (LSM이 코팅된 고체산화물 연료전지용 Crofer Mesh 집전체 개발)

  • Baek, Joo-Yul;Park, Seok-Joo;Lee, Seung-Bok;Lee, Jong-Won;Lim, Tak-Hyoung;Song, Rak-Hyun;Kim, Kwang-Bum;Shin, Dong-Ryul
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.256-263
    • /
    • 2010
  • A Crofer 22 APU mesh coated with a conductive ceramic material was developed as an alternative cathode current collector to Ag-based materials for solid oxide fuel cells. $(La_{0.80}Sr_{0.20})_{0.98}MnO_3$ (LSM) layer was deposited onto the Crofer mesh using a spray-coating technique, in an attempt to mitigate the degradation of electrical properties due to surface oxidation at high temperatures. The oxidation experiments at $800^{\circ}C$ in air indicated that the areaspecific resistance (ASR) of the LSM-coated Crofer mesh was strongly dependent on the wire diameter and the contact morphology between mesh and cell. In addition, the post-heat-treatment in $H_2/N_2$ resulted in a reduced thickness of Cr-containing oxide scales at the interface between Crofer mesh and LSM layer, leading to a decreased ASR.

Skin Color Detection Using Partially Connected Multi-layer Perceptron of Two Color Models (두 칼라 모델의 부분연결 다층 퍼셉트론을 사용한 피부색 검출)

  • Kim, Sung-Hoon;Lee, Hyon-Soo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.3
    • /
    • pp.107-115
    • /
    • 2009
  • Skin color detection is used to classify input pixels into skin and non skin area, and it requires the classifier to have a high classification rate. In previous work, most classifiers used single color model for skin color detection. However the classification rate can be increased by using more than one color model due to the various characteristics of skin color distribution in different color models, and the MLP is also invested as a more efficient classifier with less parameters than other classifiers. But the input dimension and required parameters of MLP will be increased when using two color models in skin color detection, as a result, the increased parameters will cause the huge teaming time in MLP. In this paper, we propose a MLP based classifier with less parameters in two color models. The proposed partially connected MLP based on two color models can reduce the number of weights and improve the classification rate. Because the characteristic of different color model can be learned in different partial networks. As the experimental results, we obtained 91.8% classification rate when testing various images in RGB and CbCr models.

Vacuum Web-coater with High Speed Surface Modification Equipment for fabrication of 300 mm wide Flexible Copper Clad Laminate (FCCL) (초고속 대면적 표면 처리 장치가 부착된 300 mm 폭 연성 동박적층 필림 제작용 진공 웹 코터)

  • Choi, H.W.;Park, D.H.;Kim, J.H.;Choi, W.K.;Sohn, Y.J.;Song, B.S.;Cho, J.;Kim, Y.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.2
    • /
    • pp.79-90
    • /
    • 2007
  • Prototype of $800{\ell}$ vacuum web coater (Vic Mama) consisting of ion source with low energy less than 250 eV for high speed surface modification and 4 magnetron sputter cathodes was designed and constructed. Its performance was evaluated through fabricating the adhesiveless flexible copper clad laminate (FCCL). Pumping speed was monitored in both upper noncoating zone pumped down by 2 turbo pumps with 2000 l/sec pumping speed and lower surface modification and sputter zone vacuumed by turbo pumps with 450 1/sec and 1300 1/sec pumping speed respectively. Ion current density, plasma density, and uniformity of ion beam current were measured using Faraday cup and the distribution of magnetic field and erosion efficiency of sputter target were also investigated. With the irradiation of ion beams on polyimide (Kapton-E, $38{\mu}m$) at different fluences, the change of wetting angle of the deionized water to polyimide surface and those of surface chemical bonding were analyzed by wetting anglometer and x-ray photoelectron spectroscopy. After investigating the deposition rate of Ni-Cr tie layer and Cu layer was investigated with the variations of roll speed and input power to sputter cathode. FCCL fabricated by sputter and electrodeposition method and characterized in terms of the peel strength, thermal and chemical stability.