• 제목/요약/키워드: Cr/CrN

검색결과 1,523건 처리시간 0.032초

Effect of Working Pressure and Substrate Bias on Phase Formation and Microstructure of Cr-Al-N Coatings

  • Choi, Seon-A;Kim, Seong-Won;Lee, Sung-Min;Kim, Hyung-Tae;Oh, Yoon-Suk
    • 한국세라믹학회지
    • /
    • 제54권6호
    • /
    • pp.511-517
    • /
    • 2017
  • With different working pressures and substrate biases, Cr-Al-N coatings were deposited by hybrid physical vapor deposition (PVD) method, consisting of unbalanced magnetron (UBM) sputtering and arc ion plating (AIP) processes. Cr and Al targets were used for the arc ion plating and the sputtering process, respectively. Phase analysis, and composition, binding energy, and microstructural analyses were performed using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FESEM), respectively. Surface droplet size of Cr-Al-N coatings was found to decrease with increasing substrate bias. A decrease of the deposition rate of Cr-Al-N films was expected due to the increase of substrate bias. The coatings were grown with textured CrN phase and (111), (200), and (220) planes. X-ray diffraction data show that all Cr-Al-N coatings shifted to lower diffraction angles due to the addition of Al. The XPS results were used to determine the $Cr_2N$, CrN, and (Cr,Al)N binding energies. The compositions of the Cr-Al-N films were measured by XPS to be Cr 23.2~36.9 at%, Al 30.1~40.3 at%, and N 31.3~38.6 at%.

A Study on Corrosion Resistance Characteristics of PVD Cr-N Coated Steels by Electrochemical Method

  • Ahn, SeungHo;Yoo, JiHong;Choi, YoonSeok;Kim, JungGu;Han, JeonGun
    • Corrosion Science and Technology
    • /
    • 제2권6호
    • /
    • pp.289-295
    • /
    • 2003
  • The corrosion behavior of Cr-N coated steels with different phases (${\alpha}-Cr$, CrN and $Cr_2N$) deposited by cathodic arc deposition on Hl3 steel was investigated in 3.5% NaCl solution at ambient temperature. Potentiodynamic polarization test, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were the techniques applied to characterize the corrosion behavior. It was found that the CrN coating had a lower current density from potentiodynamic polarization test than others. The porosity, corresponding to the ratio of the polarization resistance of the uncoated and the coated substrate, was higher in the $Cr_2N$ coating than in the other Cr-N coated steels. EIS measurements showed, for the most of Cr-N coated steels, that the Bode plot presented two time constants. Also, the $Cr_2N$ coating represents the characteristic of Warburg behavior after 72hr of immersion. The coating morphologies were examined in planar view and cross-section by SEM analyses and the results were compared with those of the electrochemical measurement. The CrN coating had a dense, columnar grain-sized microstructure with minor intergranular porosity. From the above results, the CrN coating provided a better corrosion protection than the other Cr-N coated steels.

NiCr과 NiCr-N 박막의 전기저항 특성에 관한 연구 (Study on electrical resistance in NiCr and NiCr-N thin films)

  • 김동진;류제천;김용일;강전홍;유광민;김장환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 C
    • /
    • pp.1399-1401
    • /
    • 2001
  • We studied on structure and resistivity, temperature coefficient of resistance (TCR) of NiCr and NiCr-N thin resistor films prepared by do reactive magnetron sputtering of NiCr target. It is found that while pure NiCr films are polycrystalline, an addition of nitrogen (N2/(Ar+N2) ratios are between 10% and 70%) into the film is changed into amorphous structure and sheet resistance of films is increased. Measurement temperatures of TCR are ratios of $5^{\circ}C$ per 15min from $25^{\circ}C$ to $130^{\circ}C$. TCR for an as-deposited NiCr-N thin film is varied from positive to negative.

  • PDF

High rate magnetron sputtering of thick Cr-based tribological coatings

  • Bin, Jin H.;Nam, Kyung H.;Boo, Jin H.;Han, Jeon G.
    • 한국표면공학회지
    • /
    • 제34권5호
    • /
    • pp.409-413
    • /
    • 2001
  • In this study, high rate deposition of thick CrNx films was carried out by crossed field unbalanced magnetron sputtering for the special application such as piston ring employed in automobile engine. For the high rate deposition and thick CrNx films formation with thickness of 30$\mu\textrm{m}$, high power density of $35W/cm^2$ in each target was induced and the multi-layer films of Cr/CrN and $\alpha$-Cr/CrN were synthesized by control of $N_2$ flow rate. The dynamic deposition rate of Cr and $\alpha$-CrN film was reached to 0.17$\mu\textrm{m}$/min and 0.12$\mu\textrm{m}$/rnin and the thick CrN$_{x}$. film of 30$\mu\textrm{m}$ could be obtained less than 5 hours. The maximum hardness was obtained above 2200 kg/mm$^2$ and adhesion strength was measured in about 70N, in case of multi-layers films. And the friction coefficient was measured by 0.4, which was similar to the value of CrN single-layer film.m.

  • PDF

Syntheses and Properties of Quaternary Cr-Ti-B-N Coatings by a High Power Impulse Magnetron Sputtering Technique

  • Myoung, Hee-Bok;Zhang, Teng Fei;Park, Jong-Keuk;Kim, Doo-In;Kim, Kwang Ho
    • 한국표면공학회지
    • /
    • 제45권6호
    • /
    • pp.232-241
    • /
    • 2012
  • Cr-Ti-B-N coatings were synthesized by a hybrid coating system combining high power impulse magnetron sputtering (HIPIMS) and DC pulse magnetron sputtering from a $TiB_2$ and a Cr target in argon-nitrogen environment, respectively. By changing the power applied on the Cr and $TiB_2$ cathodes, the Cr-Ti-B-N coatings with various Ti/Cr ratio and B content were deposited. The phase structure, microstructure and chemical compositions of the Cr-Ti-B-N coatings were studied by X-ray diffraction (XRD), transmission scanning electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). With increase of Cr element in the coatings, the nanocomposite microstructure consisting of nano-sized (Cr, Ti) N crystallites and amorphous BN phase were obtained in the coatings. The microhardness of the Cr-Ti-B-N coatings exhibited a peak value of ~41 GPa for the $CrTi_{0.1}B_{0.4}N_{1.3}$, and then decreased with further increase of Cr content in the coatings, and all the coatings exhibited low friction coefficient. The oxidation and corrosion behavior of the Cr-Ti-B-N coatings revealed better properties due to the formation of a nanocomposite microstructure.

CFUBM 시스템으로 합성한 CrN / CrAlN 초격자 박막의 마찰 특성 (Tribological properties of CrN / CrAlN superlattice thin films by CFUBMS)

  • 변태준;김연준;한전건
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2007년도 추계학술대회 논문집
    • /
    • pp.130-131
    • /
    • 2007
  • 초고경도 박막을 얻기 위해 질화물을 이용한 CrN / CrAlN 초격자 박막을 CFUBM 시스템을 통해 합성하였다. 초격자 박막의 각층의 두께 (${\lambda}$)는 기판의 회전 속도를 이용하여 제어하여 4.4 에서 44.1 nm 까지 합성하였다. 박막의 결정구조 및 미세구조를 분석하기 위하여 고분해능 X선 회절 분석기 (HR-XRD)를 이용하였으며, 박막의 기계적 성질은 나노 인덴터와 ball on disk tester를 통해 분석하였다. CrN / CrAlN 초격자 박막은 각층의 두께 (${\lambda}$)에 따라 28.77 GPa에서 31.97 GPa의 경도 값을 나타내었으며, 미세구조와 기계적 특성이 변화를 관찰할 수 있었다.

  • PDF

중간층 조건에 따른 Cr-Mo-N 막의 상형성 및 마찰마모 거동 연구 (Tribology and Phase Evolution of Cr-Mo-N Coatings with Different Interlayer Condition)

  • 양영환;여인웅;박상진;임대순;오윤석
    • 한국표면공학회지
    • /
    • 제44권6호
    • /
    • pp.269-276
    • /
    • 2011
  • Phase evolution and tribological behavior of Cr-Mo-N multi compositional films with different interlayer were investigated. The films were deposited by hybrid PVD (Physical Vapor Deposition) system consisted of dc unbalanced magnetron (UBM) sputtering and arc ion plating (AIP) sources. A pure molybdenum (Mo) was used as sputtering target and also a pure Cr was used as AIP target to form the Cr-Mo-N films. Various growth planes were found, no textured surface, in all of the multi composition films. Maximum value of microhardness was measured in Cr-Mo-N film with Mo interlayer as 29 GPa. Composition film was mainly showed the aspect of the adhesive wear than CrN film. The friction coefficient was decreased from 0.6 for pure CrN coating to 0.35 for Cr-Mo-N film with Mo interlayer. This result may come from the formation of metal oxide tribo-layer which is known as solid lubricant during the wear test.

하이브리드 코팅 시스템으로 제조된 초고경도 Cr-Si-C-N 나노복합 코팅막의 미세구조 및 기계적 특성 (Microstructure and Mechanical Properties of Superhard Cr-Si-C-N Coatings Prepared by a Hybrid Coating System)

  • 장철식;허수정;송풍근;김광호
    • 한국표면공학회지
    • /
    • 제38권3호
    • /
    • pp.100-105
    • /
    • 2005
  • Cr-Si-C-N coatings were deposited on steel substrate (SKD 11) by a hybrid system of arc ion plating (AIP) and sputtering techniques. From XRD, XPS, and HRTEM analyses, it was found that Cr-Si-C-N had a fine composite microstructure comprising nano-sized crystallites of Cr(C, N) well distributed in the amorphous phase of $Si_3N_4/SiC$ mixture. Microhardness of Cr(C, N) coatings and Cr-Si-N coatings were reported about $\~22 GPa$ and $\~35 GPa$, respectively. As the Si was incorporated into Cr(C, N) coatings, The Cr-Si-C-N coatings having a Si content of $9.2 at.\%$ showed the maximum hardness value. As increased beyond Si content of $9.2 at.\%$, the interaction between nanocrystallites and amorphous phase was gone, the hardness was reduced as dependent on amorphous phase of $Si_3N_4/SiC$. In addition, the average coefficient of Cr-Si-C-N coatings largely decreased compared with Cr(C, N) coatings.

Adhesion of Human Osteoblasts Cell on CrN Thin Film Deposited by Cathodic Arc Plasma Deposition

  • Pham, Vuong-Hung;Kim, Sun-Kyu
    • 한국표면공학회지
    • /
    • 제42권5호
    • /
    • pp.203-207
    • /
    • 2009
  • Interaction between human osteoblast (hFOB 1.19) and CrN films was conducted in vitro. CrN films were produced by cathodic arc plasma deposition. The surface was characterized by atomic force microscopy (AFM). CrN films, glass substrates and TiN films were cultured with human osteoblasts for 48 and 72 hours. Actin stress fiber patterns and cell adhesion of osteoblasts were found less organized and weak on CrN films compared to those on the glass substrates and the TiN films. Human osteoblasts also showed less proliferation and less distributed microtubule on CrN films compared to those on glass substrates and TiN films. Focal contact adhesion was not observed in the cells cultured on CrN films, whereas focal contact adhesion was observed well in the cells cultured on glass substrates and TiN films. As a result, the CrN film is a potential candidate as a surface coating to be used for implantable devices which requires minimal cellular adhesion.

Ti0.5Al0.5N/CrN 나노 다층 박막의 기계적 성질과 열적 안정성 (Mechanical Properties and Thermal Stability of Ti0.5Al0.5N/CrN Nano-multilayered Coatings)

  • 안승수;박종극;오경식;정태주
    • 한국분말재료학회지
    • /
    • 제27권5호
    • /
    • pp.406-413
    • /
    • 2020
  • Ti0.5Al0.5N/CrN nano-multilayers, which are known to exhibit excellent wear resistances, were prepared using the unbalanced magnetron sputter for various periods of 2-7 nm. Ti0.5Al0.5N and CrN comprised a cubic structure in a single layer with different lattice parameters; however, Ti0.5Al0.5N/CrN exhibited a cubic structure with the same lattice parameters that formed the superlattice in the nano-multilayers. The Ti0.5Al0.5/CrN multilayer with a period of 5.0 nm exceeded the hardness of the Ti0.5Al0.5N/CrN single layer, attaining a value of 36 GPa. According to the low-angle X-ray diffraction, the Ti0.5Al0.5N/CrN multilayer maintained its as-coated structure up to 700℃ and exhibited a hardness of 32 GPa. The thickness of the oxidation layer of the Ti0.5Al0.5N/CrN multilayered coating was less than 25% of that of the single layers. Thus, the Ti0.5Al0.5N/CrN multilayered coating was superior in terms of hardness and oxidation resistance as compared to its constituent single layers.