• Title/Summary/Keyword: Coverage area

Search Result 992, Processing Time 0.031 seconds

Coverage Scheduling control Algorithm in MANET (모바일 에드 혹 네트워크에서 커버리지 스케쥴링 제어 알고리즘)

  • Oh, Young-jun;Lee, Kang-whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.848-850
    • /
    • 2014
  • Mobile Ad hoc Networks(MANET) is consist of node that has mobility, MANET build cluster formation for using energy efficient. In existing LEACH algorithm elect cluster head node in coverage area by distribution function. However, when the cluster head node, that elected by distribution function, is divided coverage area unevenly, the network can't consumption energy efficiency. To solve this problem, we proposed CSWC(Coverage Scheduling Weight-value Control) algorithm. When the coverage area is divided nonchalance, proposed algorithm increased number of hops, that determines coverage area, for balance coverage area. As the result proposed algorithm is set balance coverage area, the network consumption energy efficiency.

  • PDF

Survey of Areas Underserved by Plastic Surgery in Japan

  • Sato, Makoto
    • Archives of Plastic Surgery
    • /
    • v.49 no.2
    • /
    • pp.215-220
    • /
    • 2022
  • Background In Japan, there is a large regional disparity in plastic surgery availability. In order for plastic surgery to be widely available for all citizens, it is essential for at least one plastic surgery facility to be located in each secondary medical zone. Methods Using the Japan Society of Plastic and Reconstructive Surgery homepage and some databases, we extracted data on secondary medical zones that do not have a plastic surgery facility. The national and regional coverage rates were calculated. The coverage rate for each group divided by the degree of population concentration was also calculated. Results We found that 147 of 344 secondary medical zones did not have a plastic surgery facility, and the area coverage rate was found to be 57.27% nationwide. The coverage rate in terms of population was 87.07% (correlation coefficient of area and population coverage = 0.983). The area coverage rates in Hokkaido-Tohoku, Kanto, Chubu, Kansai, Chugoku-Shikoku, and Kyushu-Okinawa districts were 47.46, 72.15, 76.47, 62.79, 52.08, and 32.81%, respectively. The corresponding population coverage rates were 79.92, 91.62, 94.27, 90.59, 80.68, and 69.54%, respectively. The area coverage rates in metropolitan areas, provincial cities, and rural areas were 98.08, 75.90, and 15.87%, respectively. In contrast, the area coverage rate of dermatology was 62.79% and that of orthopaedics was 97.09%. Conclusion Unfortunately, it is estimated that more than 40% of secondary medical zones are underserved by plastic surgery, and 13% of the population is not able to fully benefit from this specialty in Japan.

Border Effect of Transmission Coverage in Mobile Wireless Communications

  • Haughs, J. David;Kim, Dong-Soo S.
    • Journal of Ubiquitous Convergence Technology
    • /
    • v.2 no.2
    • /
    • pp.97-104
    • /
    • 2008
  • In this paper, we demonstrate the boundary effect of a deployed regions on the effective coverage of a mobile node. A node coverage area is not uniform throughout the entire deployed region. Assuming a uniform coverage can result in significant error in calculations. In this study, we analyze the behavior of a node's coverage area as a function of its transmission range throughout the entire deployed region. Using this analysis, a mathematical model for effective coverage in mobile wireless communications is created. The mathematical model considers the effect of the deployed regions boundaries on the coverage area of a mobile node. Lastly, we present simulation results to verify the analytical model and to compare this model with that of a uniform coverage.

  • PDF

A Learning Automata-based Algorithm for Area Coverage Problem in Directional Sensor Networks

  • Liu, Zhimin;Ouyang, Zhangdong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4804-4822
    • /
    • 2017
  • Coverage problem is a research hot spot in directional sensor networks (DSNs). However, the major problem affecting the performance of the current coverage-enhancing strategies is that they just optimize the coverage of networks, but ignore the maximum number of sleep sensors to save more energy. Aiming to find an approximate optimal method that can cover maximum area with minimum number of active sensors, in this paper, a new scheduling algorithm based on learning automata is proposed to enhance area coverage, and shut off redundant sensors as many as possible. To evaluate the performance of the proposed algorithm, several experiments are conducted. Simulation results indicate that the proposed algorithm have effective performance in terms of coverage enhancement and sleeping sensors compared to the existing algorithms.

Extending Ionospheric Correction Coverage Area by using Extrapolation Methods (외삽기법을 이용한 전리층 보정정보 영역 확장)

  • Kim, Jeongrae;Kim, Mingyu
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.3
    • /
    • pp.74-81
    • /
    • 2014
  • The coverage area of GNSS regional ionospheric correction model is mainly determined by the disribution of GNSS ground monitoring stations. Outside the coverage area, GNSS users may receive ionospheric correction signals but the correction does not contain valid correction information. Extrapolation of the correction information can extend the coverage area to some extent. Three interpolation methods, Kriging, biharmonic spline and cubic spline, are tested to evaluate the extrapolation accuracy of the ionospheric delay corrections outside the correction coverage area. IGS (International GNSS Service) ionosphere map data is used to simulate the corrections and to compute the extrapolation error statistics. Among the three methods, biharmonic method yields the best accuracy. The estimation error has a high value during Spring and Fall. The error has a high value in South and East sides and has a low value in North side.

Coverage Distribution of Blasted Droplets by an Orchard Sprayer (과수방제기 살포입자의 도포율 분포특성)

  • 구영모;김상헌;신범수
    • Journal of Biosystems Engineering
    • /
    • v.26 no.4
    • /
    • pp.355-362
    • /
    • 2001
  • Uniform application of agri-chemicals will improve orchard pest management. An air-blast(orchard) sprayer designed for vineyards has been used: however, few research on the uniformity and coverage of the sprays has been reported. Distributions of spray coverage were measured with artificial targets and analyzed to enhance the efficiency of spray application. A structure was built to place water sensitive papers, sampling spray droplets blasted from the orchard sprayer. The sampling cards were collected from five directions at three distances (2.5, 3.0 and 3.5m) for two fan speeds (2,075 and 3,031 rpm), and analyzed using an image analysis system. The distribution of the coverage percent area did not follow the wind velocity pattern. The coverage by the low fan speed was more uniform and higher than that by the higher fan speed. The coverage percent area decreased with an increase of distance. The distribution of droplet density was similar to that of coverage. However, the coverage contribution by smaller droplets became more significant as the distance increased. The upward blasting distance was limited within 3m, but the limit to the ground level was expanded the distance more than 3.5m because of the concentrated droplets.

  • PDF

An Autonomous Downlink Power Adjustment Method of Femtocell for Coverage Optimization in Next Generation Heterogeneous Networks (차세대 이종망에서 커버리지 최적화를 위한 자율적 펨토셀 전송 전력 조절 기법 연구)

  • Jo, Sangik;Lim, Jaechan;Hong, Daehyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.1
    • /
    • pp.18-25
    • /
    • 2013
  • In this paper, we propose a self-optimization scheme for indoor femtocell coverage in heterogeneous networks. If the femtocell coverage is larger than indoor area, neighbor cell users passing by the outer area of the femtocell coverage may request an unnecessary handover which incurs wasteful signaling overhead. On the other hand, if the coverage is smaller than the indoor area, some of indoor users might not be connected to the indoor femtocell. Therefore, we propose the method by which the femtocell coverage attains the exact indoor area employing self-organized scheme. Autonomous self TX power adjustment of the femtocell is possible because the proposed method utilizes handover request events and membership information of users that can be obtained by the femtocell itself. We show that the TX power obtained by the proposed algorithm converges to the optimal TX power that can be obtained analytically to attain the indoor coverage area.

A Study on the Calculation Methods on the Ratio of Green Coverage Using Satellite Images and Land Cover Maps (위성영상과 토지피복도를 활용한 녹피율 산정방법 연구)

  • Moon, Chang-Soon;Shim, Joon-Young;Kim, Sang-Bum;Lee, Shi-Young
    • Journal of Korean Society of Rural Planning
    • /
    • v.16 no.4
    • /
    • pp.53-60
    • /
    • 2010
  • This study aims at suggesting the attributes and limitations of each methods through the evaluation of the verified analysis results, so that it will be possible to select an efficient method that may be applied to assess the green coverage ratio. Green coverage areas of each sites subject to this study were assessed utilizing the following four methods. First, assessment of green coverage area through direct planimetry of satellite images. Second, assessment of green coverage area using land cover map. Third, assessment of green coverage area utilizing the band value in satellite images. Forth, assessment of green coverage area using and land cover map and reference materials. For this study, four urban zones of the City of Seosan in Chungcheongnam-do. As a result, this study show that the best calculation method is the one that combines the merits of first and second methods. This method is expected to be suitable for application in research sites of middle size and above. It is also deemed that it will be possible to apply this method in researches of wide area, such as setting up master plans for parks and green zones established by each local self-government organizations.

Combine Harvest Scheduling Program for Rough Rice using Max-coverage Algorithm

  • Lee, Hyo-Jai;Kim, Oui-Woung;Kim, Hoon;Han, Jae-Woong
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.18-24
    • /
    • 2013
  • Purpose: This study was conducted to develop an optimal combine scheduling program using Max-Coverage algorithm which derives the maximum efficiency for a specific location in harvest seasons. Methods: The combine scheduling program was operated with information about combine specification and farmland. Four operating types (Max-Coverage algorithm type, Boustrophedon path type, max quality value type, and max area type) were selected to compare quality and working capacity. Result: The working time of Max-Coverage algorithm type was shorter than others, and the total quality value of Max-Coverage algorithm and max quality value type were higher than others. Conclusion: The developed combine scheduling program using Max-Coverage algorithm will provide optimal operation and maximum quality in a limited area and time.

NUMERICAL STUDY ON THE OPTIMAL DESIGN OF SPRAY SYSTEM IN PACKED BED SCRUBBER (충진층식 스크러버의 스프레이 시스템 최적 설계에 대한 수치해석적 연구)

  • Ko, S.W.;Ro, K.C.;Ryou, H.S.
    • Journal of computational fluids engineering
    • /
    • v.12 no.1
    • /
    • pp.28-34
    • /
    • 2007
  • This study evaluates the performance of the packed bed scrubber and proposes the optimization of spray system for improvements of collection efficiency. The packed bed scrubber is used primarily in the semiconductor manufacturing process. The mean diameter of entering solid particles in scrubber is the submicron. The impaction between water droplets and solid particles is an important factor in removing the solid particles. Thus, the coverage area of spray system influences on the collection efficiency. The collection efficiency of a single droplet is calculated through the mathematical model and numerical calculations are performed for coverage area for each nozzle type (Droplet diameters: 500, 319.5, $289.5{\mu}m$) and injected directions (0, 15, $30^{\circ}$). In case of nozzle type 3, the collection efficiency of a single droplet is highest but the collection efficiency of spray system has lowest value because the ratio of flow rate between the gas and water is below 0.1. The results show the coverage area ratio is about 85% in the case of nozzle type 3 and downward sirection $15^{\circ}$. It was shown that a coverage area increase by two times than an existing spray system. In simulation of demister, collection efficiency by demister is predicted about 80% and the pressure drop in demister is below 3.5 Pa.