• Title/Summary/Keyword: Cover-image

Search Result 715, Processing Time 0.031 seconds

Determination of Sampling Unit Size for Cultivation Area Survey using Remote Sensing Technology

  • Park, Jin-Woo;Shin, Gi-Eun;Lee, Suk-Hoon;Byun, Jong-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.5
    • /
    • pp.733-741
    • /
    • 2012
  • The successful launch of Arirang satellites allow the acquisition of high resolution satellite imagery of Korean territory and enables the transition from the conventional cultivation area survey method to new image based methods adopted in advanced nations. In this study, we suggested reasonable sizes of the primary sampling unit and the secondary sampling unit for the satellite imagery based sampling design in 8 provinces preselected for this research. The PSU size was determined mainly in consideration of intracorrelation that shows the degree of homogeneity within each cluster and the efficiency of the image process. For the SSU size, we considered the relative standard error and the differences between the land cover maps produced by the Ministry of Environment and the satellite imagery processed by the National Statistical Office.

Application of the 3D Discrete Wavelet Transformation Scheme to Remotely Sensed Image Classification

  • Yoo, Hee-Young;Lee, Ki-Won;Kwon, Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.355-363
    • /
    • 2007
  • The 3D DWT(The Three Dimensional Discrete Wavelet Transform) scheme is potentially regarded as useful one on analyzing both spatial and spectral information. Nevertheless, few researchers have attempted to process or classified remotely sensed images using the 3D DWT. This study aims to apply the 3D DWT to the land cover classification of optical and SAR(Synthetic Aperture Radar) images. Then, their results are evaluated quantitatively and compared with the results of traditional classification technique. As the experimental results, the 3D DWT shows superior classification results to conventional techniques, especially dealing with the high-resolution imagery and SAR imagery. It is thought that the 3D DWT scheme can be extended to multi-temporal or multi-sensor image classification.

Change Detection in Land-Cover Pattern Using Region Growing Segmentation and Fuzzy Classification

  • Lee Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.1
    • /
    • pp.83-89
    • /
    • 2005
  • This study utilized a spatial region growing segmentation and a classification using fuzzy membership vectors to detect the changes in the images observed at different dates. Consider two co-registered images of the same scene, and one image is supposed to have the class map of the scene at the observation time. The method performs the unsupervised segmentation and the fuzzy classification for the other image, and then detects the changes in the scene by examining the changes in the fuzzy membership vectors of the segmented regions in the classification procedure. The algorithm was evaluated with simulated images and then applied to a real scene of the Korean Peninsula using the KOMPSAT-l EOC images. In the expertments, the proposed method showed a great performance for detecting changes in land-cover.

IKONOS Stereo Matching with Land Cover Map for DEM Generation

  • Lee, Hyo-Seong;Ahn, Ki-Weon;Park, Byung-Guk;Han, Dong-Yeob
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.580-583
    • /
    • 2007
  • Various matching methods have been introduced by investigators to improve digital elevation model (DEM) accuracy of satellite imagery. This study proposed an area-based matching method according to land cover property using correlation coefficient of pixel brightness value between the two images for DEM generation from IKONOS stereo imagery. For this, matching line (where "matching line" implies straight line that is approximated to complex nonlinear epipolar geometry) is established by exterior orientation parameters to minimize search area. The matching is carried out based on this line. Land cover classes are divided off into water, urban land, forest and agricultural land. Matching size is selected using a correlation-coefficient image in the four areas. The selected sizes are $81{\times}81$ pixels window, $21{\times}21$ pixels window, $119{\times}119$ pixels window and $51{\times}51$ pixels window in the water area, urban land, forest land and agricultural land, respectively. And hence, DEM is generated from IKONOS stereo imagery using the selected matching sizes and land cover map on the four types.

  • PDF

Land Cover Classification of a Wide Area through Multi-Scene Landsat Processing (다량의 Landsat 위성영상 처리를 통한 광역 토지피복분류)

  • 박성미;임정호;사공호상
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.3
    • /
    • pp.189-197
    • /
    • 2001
  • Generally, remote sensing is useful to obtain the quantitative and qualitative information of a wide area. For monitoring earth resources and environment, land cover classification of remotely sensed data are needed over increasingly larger area. The objective this study is to propose the process for land cover classification method over a wide area using multi-scene satellite data. Land cover of Korean peninsula was extracted from a Landsat TM and ETM+ mosaic created from 23 scenes at 100-meter resolution. Well-known techniques that used to general image processing and classification are applied to this wide area classification. It is expected that these process is very useful to promptly and efficiently grasp of small scale spatial information such as national territorial information.

The study of iris region extraction for iris recognition (홍채 인식을 위한 홍채 영역 추출)

  • Yoon, Kyong-Lok;Yang, Woo-S.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.181-183
    • /
    • 2004
  • In this paper, We proposed an algorithm which extraction iris region from 2D image. Our method is composed of three parts : internal boundary defection and external boundary detection. Since eyelid and eyelash cover part of the boundary and the size of iris changes continuously, it is difficult to extract iris region accurately. For the interior and exterior boundary detection, we used partial differentiation of histogram. Performance of the proposed algorithm is tested and evaluated using 360 iris image samples.

  • PDF

Optical Image Hiding Technique using Real-Valued Decoding Key (실수값 복원키를 이용한 광 영상 은닉 기술)

  • Cho, Kyu-Bo;Seo, Dong-Hoan;Choi, Eun-chang
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.3
    • /
    • pp.168-173
    • /
    • 2011
  • In this paper, an optical image hiding technique using real-valued decoding key is proposed. In the embedding process, a each zero-padded original image placed in a quadrants on an input plane is multiplied by a statistically independent random phase pattern and is Fourier transformed. An encoded image is obtained by taking the real-valued data from the Fourier transformed image. And then a phase-encoded pattern, used as a hidden image and a decoding key, is generated by the use of multiple phase wrapping from the encoded images. A transmitted image is made from the linear superposition of the weighted hidden images and a cover image. In reconstruction process, the mirror reconstructed images can be obtained at two quadrants by the inverse-Fourier transform of the product of the transmitted image and the decoding key. Computer simulation and optical experiment are demonstrated in order to confirm the proposed technique.

Improvement of Land Cover Classification Accuracy by Optimal Fusion of Aerial Multi-Sensor Data

  • Choi, Byoung Gil;Na, Young Woo;Kwon, Oh Seob;Kim, Se Hun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.3
    • /
    • pp.135-152
    • /
    • 2018
  • The purpose of this study is to propose an optimal fusion method of aerial multi - sensor data to improve the accuracy of land cover classification. Recently, in the fields of environmental impact assessment and land monitoring, high-resolution image data has been acquired for many regions for quantitative land management using aerial multi-sensor, but most of them are used only for the purpose of the project. Hyperspectral sensor data, which is mainly used for land cover classification, has the advantage of high classification accuracy, but it is difficult to classify the accurate land cover state because only the visible and near infrared wavelengths are acquired and of low spatial resolution. Therefore, there is a need for research that can improve the accuracy of land cover classification by fusing hyperspectral sensor data with multispectral sensor and aerial laser sensor data. As a fusion method of aerial multisensor, we proposed a pixel ratio adjustment method, a band accumulation method, and a spectral graph adjustment method. Fusion parameters such as fusion rate, band accumulation, spectral graph expansion ratio were selected according to the fusion method, and the fusion data generation and degree of land cover classification accuracy were calculated by applying incremental changes to the fusion variables. Optimal fusion variables for hyperspectral data, multispectral data and aerial laser data were derived by considering the correlation between land cover classification accuracy and fusion variables.

Landsat TM Based Land-cover Analysis of Cholwon (South Korea) and Wonsan (North Korea)

  • Song, Moo-Young;Park, Jong-Oh;Shin, Kwang-Soo;Yu, Young-Chul
    • Journal of the Korean earth science society
    • /
    • v.23 no.1
    • /
    • pp.1-14
    • /
    • 2002
  • The land-cover of two regions of South and North Korea included in one Landsat TM scene was investigated by comparing different seasons and different band data over the multiple land-cover types. The relationships between the intensities of two bands in the 2-D plot are mainly linear in band2 versus band1 and band3 versus band1, polygonal sporadic in band5 versus band1 and band7 versus band1, and almost tri-polarized in band4 versus band3. The 2-D plot of band4/band3 shows the best capability to discriminate different main land-cover such as water, vegetation and dry soil. Some discriminations are not clear between city and dry field, or mountain and plain field in the scene of September. The digital number data of band4 from vegetated zones show stronger reflectance in September rather than April, while other band values tend to be lager in April than in September over each land-cover. NDVI presents high value in both regions in September. However the image of Wonsan area in April suggests weak vigor of vegetation in comparison with Cholwon area. Band ratios are very effective in eliminating the influence of the complex topography. The proper pairing of the band ratio improved the discrimination capability of the land-cover; band5/band2 for dry soil, band4/band3 for vegetation and band1/band7 for the water. The RGB combination of the three band ratio pairs showed the best results in the discrimination of the land-cover of Wonsan, Cholwon and even the Demilitarized Zone.

Performance Evaluation of Machine Learning Algorithms for Cloud Removal of Optical Imagery: A Case Study in Cropland (광학 영상의 구름 제거를 위한 기계학습 알고리즘의 예측 성능 평가: 농경지 사례 연구)

  • Soyeon Park;Geun-Ho Kwak;Ho-Yong Ahn;No-Wook Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.507-519
    • /
    • 2023
  • Multi-temporal optical images have been utilized for time-series monitoring of croplands. However, the presence of clouds imposes limitations on image availability, often requiring a cloud removal procedure. This study assesses the applicability of various machine learning algorithms for effective cloud removal in optical imagery. We conducted comparative experiments by focusing on two key variables that significantly influence the predictive performance of machine learning algorithms: (1) land-cover types of training data and (2) temporal variability of land-cover types. Three machine learning algorithms, including Gaussian process regression (GPR), support vector machine (SVM), and random forest (RF), were employed for the experiments using simulated cloudy images in paddy fields of Gunsan. GPR and SVM exhibited superior prediction accuracy when the training data had the same land-cover types as the cloud region, and GPR showed the best stability with respect to sampling fluctuations. In addition, RF was the least affected by the land-cover types and temporal variations of training data. These results indicate that GPR is recommended when the land-cover type and spectral characteristics of the training data are the same as those of the cloud region. On the other hand, RF should be applied when it is difficult to obtain training data with the same land-cover types as the cloud region. Therefore, the land-cover types in cloud areas should be taken into account for extracting informative training data along with selecting the optimal machine learning algorithm.