• Title/Summary/Keyword: Coupling Structure

Search Result 1,376, Processing Time 0.031 seconds

An Identification of the Image Retrieval Domain from the Perspective of Library and Information Science with Author Co-citation and Author Bibliographic Coupling Analyses

  • Yoon, JungWon;Chung, EunKyung;Byun, Jihye
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.49 no.4
    • /
    • pp.99-124
    • /
    • 2015
  • As the improvement of digital technologies increases the use of images from various fields, the domain of image retrieval has evolved and become a growing topic of research in the Library and Information Science field. The purpose of this study is to identify the knowledge structure of the image retrieval domain by using the author co-citation analysis and author bibliographic coupling as analytical tools in order to understand the domain's past and present. The data set for this study is 245 articles with 8,031 cited articles in the field of image retrieval from 1998 to 2013, from the Web of Science citation database. According to the results of author co-citation analysis for the past of the image retrieval domain, our findings demonstrate that the intellectual structure of image retrieval in the LIS field consists of predominantly user-oriented approaches, but also includes some areas influenced by the CBIR area. More specifically, the user-oriented approach contains six specific areas which include image needs, information seeking, image needs and search behavior, image indexing and access, indexing of image collection, and web image search. On the other hand, for CBIR approaches, it contains feature-based image indexing, shape-based indexing, and IR & CBIR. The recent trends of image retrieval based on the results from author bibliographic coupling analysis show that the domain is expanding to emerging areas of medical images, multimedia, ontology- and tag-based indexing which thus reflects a new paradigm of information environment.

Design Equation of a Coupled Beam to Limit Deflection of Modular Unit Structures (모듈러 유닛 구조물의 사용성 향상을 위해 연결된 보의 처짐 제한을 위한 설계식 개발)

  • Park, Ji-Hun;An, Seok-Hyun;Cho, Bong-Ho;Lee, Sang-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.471-475
    • /
    • 2007
  • Design equations of coupling plates, which connects floor beam of the upper modular unit and overhead beam of the lower one in order to improve serviceability in vibration, are proposed. End conditions of the coupled beams is semi-rigid and the optimal location of the coupling plates are assumed. Rotational constraints for both ends of the coupling plate modeled with beam elements are released and flexibility method is applied to obtain deflection equations of the coupled beam. Proposed equations are defined using the flexibility of the coupling plate, of which size can be determined inversely. Based on numerical analysis, coefficients of the design equations are calibrated and the revised equations are verified to be useful in the design of the coupled beam.

  • PDF

Impedance and Mutual Coupling Characteristics of a Probe-Fed Stacked Circular Microstrip Two-Element Array Antenna (Probe로 급전되는 적층형 원형 마이크로스트립 2소자 배열 안테나의 임피던스 및 상호 결합 특성)

  • 이면주;남상욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.11
    • /
    • pp.1767-1773
    • /
    • 1993
  • In this paper, the coupling characteristics as well as the self and the mutual Impedance of a two-element probe-fed stacked circular microstrip array antennas are presented. A full wave analysis for the structure is performed In the spectral domain using the vector Hankel transform(VHT). Also, we presented measured results for the impedance, the coupling characteristics of the antenna and the variation of the coupling with the distance between the two elements. Finally, the calculated and measured results are shown to agree well wlth each other through comparisons.

  • PDF

Calculation of the coupling coefficient for trapezoidal gratings using the ray optics technique (기하광학 방법을 이용한 사다리꼴 회절격자의 결합계수 계산)

  • 조성찬;김부균
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.7
    • /
    • pp.97-104
    • /
    • 1997
  • Using the ray optics technique, we derive the analytic expressions of TE mode coupling coefficient for five-layer distributed feedback (DFB) structure devices. We compare the coupling coefficient calculated by the ray optics technique with those calulated by the extended additional layer method (EALM) which may be a most accurate method of calculating the coupling coefficient. The difference between the results of the ray optics technique and those of the EALM is small for most cases of grating depth and forms being practically made. In the case of rectangular gratings, the difference increases as the duty cycle of graing deviates from 0.5. In the case of the trapezoidal grating, the difference increases as the ratio of the top to the period of grating deviates from 0.5 and as the length of the top becomes longer than that of the base. The difference of theree-layer DFB structures is smaller than that of five-layer DFB structures.

  • PDF

Fluid Effects on the Core Seismic Behavior of a Liquid Metal Reactor

  • Koo, Gyeong-Hoi;Lee, Jae-Han
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2125-2136
    • /
    • 2004
  • In this paper, a numerical application algorithm for applying the CFAM (Consistent Fluid Added Mass) matrix for a core seismic analysis is developed and applied to the 7-ducts core system to investigate the fluid effects on the dynamic characteristics and the seismic time history responses. To this end, three cases such as the in-air condition, the in-water condition without the fluid coupling terms, and the in-water condition with the fluid coupling terms are considered in this paper. From modal analysis, the core duct assemblies revealed strongly coupled out-of-phase vibration modes unlike the other cases with the fluid coupling terms considered. From the results of the seismic time history analysis, it was also verified that the fluid coupling terms in the CFAM matrix can significantly affect the impact responses and the seismic displacement responses of the ducts.

Coupling Performance Analysis of a Buried Meshed-Ground in a Multi-layered Structure

  • Joung, Myoung-Sub;Park, Jun-Seok;Kim, Hyeong-Seok;Lim, Jae-Bong;Cho, Hong-Goo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.6
    • /
    • pp.282-287
    • /
    • 2004
  • Since the manufacturing process in the LTCC process does not allow solid ground planes between ceramic layers to isolate the signal lines, the buried ground should be realized as a meshed ground plane. Both characteristic impedances of the signal lines and couplings between different signal layers are influenced by the properties of these meshed planes. In this paper, we propose a new analysis method for coupling behavior between internal transmission lines, which are isolated by the buried meshed-ground planes. The coupling behavior between layers isolated by meshed-ground planes is investigated by the coupled-transmission line model for the isolated layers. The coupling factors between isolated lines with the meshed-ground are extracted by 2-D FEM calculations.

Sliding Mode Analysis Using Substructure Synthesis Method (부구조물 합성법을 이용한 슬라이딩 모드 해석)

  • Kim, Dae-Kwan;Lee, Min-Su;Han, Jae-Hung;Ko, Tae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1366-1371
    • /
    • 2006
  • A structural coupling method is developed for the dynamic analysis of a nonlinear structure with concentrated nonlinear hinge joints or sliding lines. Component mode synthesis method is extended to couple substructures and the nonlinear models. In order to verify the improved coupling method, a numerical plate model consisting of two substructures and torsional springs, is synthesized by using the proposed method and its model parameters are compared with analysis data. Then the coupling method is applied to a three-substructure-model with the nonlinearity of sliding lines between the substructures. The coupled structural model is verified from its dynamic analysis. The analysis results show that the improved coupling method is adequate for the structural nonlinear analyses with the nonlinear hinge and sliding mode condition.

  • PDF

Coupling variation induced side-lobe suppressed narrowband vertical coupler wavelength filter (광결합 변화에 의해 부모드 억제된 협대역 수직 결합기 파장 여과기)

  • 한상국
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.6
    • /
    • pp.506-509
    • /
    • 1997
  • A novel narrowband wavelength bandpass filter with a large side-lobe suppression was proposed in vertical coupler structure using coupling variation in propagation direction. Combination of a half sinusoidal distributed and a slow coupling schmes was used for narrow bandwidth and small side-lobes. Simulation showed 1.5 nm passband at 1.5507 $\mu\textrm{m}$ and the side-lobes were suppressed more than 20 dB which is two times larger than that of a constant coupling filter. A monolithic two-channel wavelength demultiplexer was proposed and theoretically investigated.

  • PDF

Effects of Channel Electron In-Plane Velocity on the Capacitance-Voltage Curve of MOS Devices

  • Mao, Ling-Feng
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.68-72
    • /
    • 2010
  • The coupling between the transverse and longitudinal components of the channel electron motion in NMOS devices leads to a reduction in the barrier height. Therefore, this study theoretically investigates the effects of the in-plane velocity of channel electrons on the capacitance-voltage characteristics of nano NMOS devices under inversion bias. Numerical calculation via a self-consistent solution to the coupled Schrodinger equation and Poisson equation is used in the investigation. The results demonstrate that such a coupling largely affects capacitance-voltage characteristic when the in-plane velocity of channel electrons is high. The ballistic transport ensures a high in-plane momentum. It suggests that such a coupling should be considered in the quantum capacitance-voltage modeling in ballistic transport devices.

Seismic Behavior of Steel Coupling Beams (철골 커플링 보의 내진거동)

  • Park Wan-Shin;Yun Hyun-Do;Hwang Sun-Kyung;Han Byung-Chan;Han Min-Ki;Lee Jong-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.93-96
    • /
    • 2004
  • Since a ductile coupled shear wall system is the primary seismic load resisting systems of many structures, a coupling beams of these system must exhibit excellent ductility and energy absorption capacity. In this paper, the seismic response of coupled shear wall system is discussed. The cyclic response of steel coupling beams embedded into reinforced concrete boundary elements was studied. Three half-scale subassemblies representing a portion of a prototype structure were designed. constructed, and tested. The main test variables were the connection details of hybrid coupled shear wall. These efforts have resulted in details for increasing the seismic capacity of steel coupling beam in the seismic behavior of buildings.

  • PDF