• Title/Summary/Keyword: Coupling Image

Search Result 85, Processing Time 0.022 seconds

Air-coupled ultrasonic tomography of solids: 1 Fundamental development

  • Hall, Kerry S.;Popovics, John S.
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.17-29
    • /
    • 2016
  • Ultrasonic tomography is a powerful tool for identifying defects within an object or structure. But practical application of ultrasonic tomography to solids is often limited by time consuming transducer coupling. Air-coupled ultrasonic measurements may eliminate the coupling problem and allow for more rapid data collection and tomographic image construction. This research aims to integrate recent developments in air-coupled ultrasonic measurements with current tomography reconstruction routines to improve testing capability. The goal is to identify low velocity inclusions (air-filled voids and notches) within solids using constructed velocity images. Finite element analysis is used to simulate the experiment in order to determine efficient data collection schemes. Comparable air-coupled ultrasonic signals are then collected through homogeneous and isotropic solid (PVC polymer) samples. Volumetric (void) and planar (notch) inclusions within the samples are identified in the constructed velocity tomograms for a variety of transducer configurations. Although there is some distortion of the inclusions, the experimentally obtained tomograms accurately indicate their size and location. Reconstruction error values, defined as misidentification of the inclusion size and position, were in the range of 1.5-1.7%. Part 2 of this paper set will describe the application of this imaging technique to concrete that contains inclusions.

Fabrication and Performance Evaluation of a Scintillating Film-based Gamma Imaging Detector to Measure Gamma-ray Distribution (감마선 분포 측정을 위한 섬광필름 기반의 감마 영상 검출기 제작 및 성능평가)

  • Shin, Sang Hun;Yoo, Wook Jae;Jang, Kyoung Won;Cho, Seunghyun;Lee, Bongsoo
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.202-207
    • /
    • 2015
  • As a feasibility study on development of a gamma imaging probe, we developed a scintillating film-based gamma imaging detector that can obtain scintillation images with information of gamma-ray distribution. The scintillating film-based gamma imaging detector was composed of a sensing probe, an image intensifier, and a beam profiler. To detect and transmit scintillation image, the sensing probe was fabricated by coupling a scintillating film, a fiber-optic image conduit, and a fiber-optic taper, consecutively. First, the optical images of USAF 1951 resolution target were obtained and then, modulation transfer function values were calculated to test the image quality of the sensing probe. Second, we measured the scintillation images according to the activity of the 137Cs and the distance between the surface of 137Cs and the distal-end of sensing probe. Finally, the intensities of scintillating light as functions of the activity and the distance were evaluated from the region of interest in the scintillation image. From the results of this study, it is expected that a fiber-optic gamma imaging detector can be developed to detect gamma-rays emitted from radiopharmaceuticals during radioimmunoguided surgery.

Design of External Coil System for Reducing Artifact of MR Image due to Implantable Hearing Aid (이식형 보청기에 의한 자기공명 영상의 인공음영 축소를 위한 외부 코일 시스템 설계)

  • Ahn, Hyoung Jun;Lim, Hyung-Gyu;Kim, Myoung Nam;Cho, Jin-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.375-385
    • /
    • 2016
  • Recently, several implantable hearing aids such as cochlear implant, middle ear implant, etc., which have a module receiving power and signal from outside the body, are frequently used to treat the hearing impaired patients. Most of implantable hearing aids are adopted permanent magnet pairs to couple between internal and external devices for the enhancement of power transmission. Generally, the internal device which containing the magnet in the center of receiving coil is implanted under the skin of human temporal bone. In case of MRI scanning of a patient with the implantable hearing aid, however, homogeneous magnetic fields of the MRI might be interfered by the implanted magnet. For the above reasons, the MR image is degraded by large area of artifact, so that diagnostics are almost impossible in deteriorated region. In this paper, we proposed an external coil system that can reduce the artifact of MR image due to the internal coupling magnet. By finite element analysis estimating area of MR artifact according to varying current and shape of the external coil, optimal coil parameters were extracted. Finally, the effectiveness of the proposed external coil system was verified by confirming the artifact at real MRI scan.

A Method of ISAR Geometric Calibration for Point Target Using Impulse-Radio UWB (임펄스 초광대역 레이다를 이용한 점표적의 ISAR 기하 보정 방법)

  • Yu, Jiwoong;Nikitin, Konstantin;Paek, Inchan;Jang, Jong Hun;Ka, Min-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.4
    • /
    • pp.397-403
    • /
    • 2015
  • In this paper, a method of ISAR geometric calibration is represented by using impulse-radio UWB radar. The ir-UWB is good for using a signal processing in time domain, so, it does not occur a multi-path or coupling problem. If a signal that between antennas and target is assumed a plane wave, a center of rotation in ISAR geometry model can be estimated by using point target. Before image is reconstructed with sinogram, the center of rotation can be calculated by using least square fitting. This method can be obtained a more contrast image, and a maximum value of entropy of image. The method, that estimates a center of rotation in received data, will be used a initial setup of instruments or a periodic compensation to reconstruct image. It would be useful in medical, security and surveillance imaging equipments that have a fixed geometry.

Estimation of Nonpoint Source Pollutant Loads of Juam-Dam Basin Based on the Classification of Satellite Imagery (위성영상 분류 기반 주암댐 유역 비점오염부하량 평가)

  • Lee, Geun-Sang;Kim, Tae-Keun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.1-12
    • /
    • 2012
  • The agricultural area was classified into dry and paddy fields in this study using the near-infrared band of Landsat TM to extract land cover classes that need to the application of Expected Mean Concentration (EMC) in nonpoint source works. The accuracy of image classification of the land cover map from Landsat TM image showed 83.61% and 78.41% respectively by comparing with the large and middle scale land cover map of Ministry of Environment. As the result of Soil Conservation Service (SCS) Curve Number (CN) using the land cover map from image classification, Dongbok dam and Dongbok stream basin were analyzed high. Also Geymbaek water-gage and Bosunggang upstream basin showed high in the analysis of EMC of BOD, TN, TP by basin. And also Geymbaek water-gage and Bosunggang upstream basin showed high in the analysis of non-point source through coupling with direct runoff. Therefore these basins were selected with the main area for the management of nonpoint source.

Hybrid Photoelastic Stress Analysis Around a Central Crack Tip in a Tensile Loaded Plate Using Isochromatic Data (등색프린지 데이터를 이용한 인장하중 판재 중앙 균열선단 주위의 하이브리드 광탄성 응력장 해석)

  • Baek, Tae-Hyun;Chen, Lei
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1200-1207
    • /
    • 2007
  • An experimental test is presented for photoelastic stress analysis around a crack tip in tensile loaded plate. The hybrid method coupling photoelastsic fringe inputs calculated by finite element method and complex variable formulations involving conformal mappings and analytical continuity is used to calculate full-field stress around the crack tip in uniaxially loaded, finite width tensile plate. In order to accurately compare calculated fringes with experimental ones, both actual and regenerated photoelastic fringe patterns are two times multiplied and sharpened by digital image processing. Regenerated fringes by hybrid method are quite comparable to actual fringes. The experimental results indicate that Mode I stress intensity factor analyzed by the hybrid method are accurate within three percent compared with ones obtained by empirical equation and finite element analysis.

Hybrid Full-field Stress Analysis around a Circular Hole in a Tensile Loaded Plate using Conformal Mapping and Photoelastic Experiment (등각사상 맵핑 및 광탄성 실험법에 의한 원형구명 주위의 하이브리드 응력장 해석)

  • Baek, Tae-Hyun;Kim, Myung-Soo;Rhee, Ju-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.988-1000
    • /
    • 1999
  • An experimental study is presented for the effect of number of terms of a pewee series type stress function on stress analysis around a hole in tensile loaded plate. The hybrid method coupling photoelastsic data inputs and complex variable formulations involving conformal mappings and analytical continuity is used to calculate tangential stress on the boundary of the hole in uniaxially loaded, finite width tensile plate. In order to measure isochromatic data accurately, actual photoelastic fringe patterns are two times multiplied and sharpened by digital image processing. For qualitative comparison, actual fringes are compared with calculated ones. For quantitative comparison, percentage errors and standard deviations with respect to percentage errors are caculated for all measured points by changing the number of terms of stress function. The experimental results indicate that stress concentration factors analyzed by the hybrid method are accurate within three percent compared with ones obtained by theoretical and finite element analysis.

Evaluation of the 256ch Flat Panel PS-PMT on Positioning Image Histogram for PET

  • Orita, Narimichi;Murayama, Hideo;Kawai, Hideyuki;Inadama, Naoko;Umehara, Takaya;Kasahara, Takehiro;Tsuda, Tomoaki
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.324-327
    • /
    • 2002
  • For a next generation PET that realizes high sensitivity and high resolution, we proposed a design of a depth of interaction detector. A unit of the detector is constructed of four stages rectangular blocks of 2 by 2 Gd$_2$SiO$\sub$5/: Ce (GSO) crystal array optically coupled to position sensitive photomultiplier tube (PS-PMT). The 256ch flat panel PS-PMT is under development by Hamamatsu Photonics K.K., JAPAN. It has large cathode area, 51.7 by 51.7 mm$^2$, and the ratio of the effective area to external size is about 90%. The feature will contribute high packing fraction, accordingly high sensitivity. The 256 anodes are arranged in 16 by 16 at intervals of 3.0 mm. So as to evaluate the detector capability for identifying crystal of interaction, we got positioning image histograms with coupling a 16 by 5 array of GSO crystals, 2.9 by 2.9 by 7.5 mm$^3$, to the PS-PMT by irradiating a gamma ray uniformly from a point source. Flat panel PS-PMT is a new promising device for PET. We need to evaluate it if its performance is sufficiency. The performance was compared to the one with a 16ch PS-PMT.

  • PDF

On the Vibration Analysis of the Floating Elastic Body Using the Boundary Integral Method in Combination with Finite Element Method

  • K.T.,Chung
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.4
    • /
    • pp.19-36
    • /
    • 1987
  • In this research the coupling problem between the elastic structure and the fluid, specially the hydroelastic harmonic vibration problem, is studied. In order to couple the domains, i.e., the structural domain and the fluid domain, the boundary integral method(direct boundary integral formulation) is used in the fluid domain in combination with the finite element method for the structure. The boundary integral method has been widely developed to apply it to the hydroelastic vibration problem. The hybrid boundary integral method using eigenfunctions on the radiation boundaries and the boundary integral method using the series form image-functions to replace the even bottom and free surface boundaries in case of high frequencies have been developed and tested. According to the boundary conditions and the frequency ranges the different boundary integral methods with the different idealizations of the fluid boundaries have been studied. Using the same interpolation functions for the pressure distribution and the displacement the two domains have been coupled and using Hamilton principle the solution of the hydroelastic have been obtained through the direct minimizing process. It has become evident that the finite-boundary element method combining with the eigenfunction or the image-function method give good results in comparison with the experimental ones and the other numerical results by the finite element method.

  • PDF

Synthesis and Characterization of Hybrid Azo Colorants for LCD Color Filter (LCD Color Filter용 Hybrid Azo Colorants 합성 및 특성 연구)

  • Choi, Woo-Geun;Jeong, Yeon Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.7
    • /
    • pp.528-533
    • /
    • 2013
  • We focused on the development of red azo colorants with high thermal stability and good solubility for LCD color filter in this research. For the synthesis of hybrid azo colorants, we used the couplers of aniline, naphthol and benzoimidazol functional group. The synthesized hybrid azo colorants were charaterized by using NMR, UV/visible spectroscopy, FT-IR, EA and TGA. They represented the maximum absorption wavelengths which are longer than 500 nm in UV/visible spectrum. So they were confirmed to be suitable for red colorants of LCD color filter. Azo compound (1a, 1b) with aniline functional group had good solubility in organic solvents such as acetone, methanol, chloroform and PGMEA. Moreover azo compounds (1c, 1d and 1e) with naphthol and benzoimidazolone functional group gave excellent thermal stability higher than $250^{\circ}C$ in TGA thermograms.